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ABSTRACT

The purpose of the work reported here was to present the structure

of factor analysis to a physical scientist and to extend the structure

where it was weakest.

The reference guide in the appendix performs as a dynamic survey

of factor analysis by guiding a neophyte factor analyst through an

application. Reference is made to expanded presentations in the body

of the report.

The structure of factor analysis has been extended in the following

areas: effects of the number of observations, sampling effect, interpre-

tation of factors, and comunality.

M



TABLE OF CONTENTS

Introduction ...................... 1
1.1 Brief History .... .................. ... I
1.2 The Model and Some Matric Notations ... ....... 2
1.3 A Statement of'the Classic Problems .. ....... 5
1.4 Method of Approach to the Classic Problems . . . 8

II Correlation Theory .... .......... ............ 10
2.1 Introduction .......... .................. 10
2.2 Definition of Correlation and the Coefficient 10
2.3 Types of Correlation Coefficients - Bivariate 13
2.4 Geometric Interpretation of Pearson's Product-

Moment Correlation Coefficient ........ 44
2.5 Significance and Reliability of Pearson's

Product-Moment Correlation Coefficient ..... ... 51
2.6 Pearson's Product-Moment Correlation Coefficient

Derived from Incomplete Data ... .......... . 55
2.7 Multivariate Correlation--Partial and Multiple

Correlation Coefficients .... ............ . 62

III The Correlation Matrix ....... ................ 65
3.1 Introduction ....... .................. . 65
3.2 Eigenvalue-Eigenvector Theory ..... .......... 65
3.3 Definitions and Properties ... ........... ... 69
3.4 Scaling Techniques Based on Sample Size ..... .... 69

IV Techniques of Factor Analysis . ........... 73
4.1 Introduction ......... ............. . 73
4.2 Review of the Model ..... ... ......... ... 73
4.3 Types of Factor Solutions .... ............ ... 76
4.4 Communality ........ ........... ....... .80
4.5 Completeness of Factorization ........ ...... 91
4.6 Eigenvalues and Their Bonds ..... ........... 106
4.7 Factor Scores ...... ................ . ..115

V The Rotation Problem ..... ................. .. 117
5.1 Introduction .................. 117
5.2 The Rotation Problem .............. 117
5.3 Survey of Rotation Tochniques ... .......... .119
5.4 Interpretation of Oblique Factors ... ........ 124

VI Uniqueness of Factor Analysis .... ............ .140

6.1 Introduction .. ......... ............... 140

6.2 The Issue of Uniqueness ..... ............. 140
6.3 Sampling Considerations ..... ............. 141

0v



TABLE: OF COA4TENTS (Cont.)

vii Application of Factor Analysis .. ..... ...... 153
7.1 Introduction. .......... ... ....... 153
7.2 Factor Analysis of Personal History and

Anthropometry Data .. ............... 153
7.3 Function Representation. .. ............ 156

VIII Recommendations. ...... ........... .. 168

References. ..... ............ ............. 169

Appendixes

I Computer Program Write-ups. .. ......... ... 176

II Time Functions of Computation .. ........... 192

III Design of aFactor Analysis. ..... .... .... 194#

IV The Reference Guide to Factor Analysis ..... ... 202

V Glossary. .. ............ ............ 205

vi



LIST OF FIGURES

1 Correlation Coefficient Scaling Chart .•........ . ...... .. 72

2 Plot of Equation 2 . . . . . . . . . . . .. . . . . .  . • •". . . ". . . 86

3 Eigenvalues of 6 x 6 Matrix ........ . . ............. ... 88

4 Eigenvalues of 13 X 13 Matrix ..... ................. ... 89

5 Eigenvalues of the 16 x 16 Matrix .... ... . .... . . . . 90

6 Relation between Factors and Variables . .... ... ........ .126

7 Rotated Factors ..................... ............ .160

0 , vii



LIST OF TABLES

1 Measurements for Two Variables--Weight and Height on

10 Individuals ..... .... ....... .................. ... 31

2 Data for an Example of the Biserial Correlation Coefficient . 37

3 Data for an Example of the *-coefficient ...... ............ 39

4 The Positive Eigenvalues of R,, R, and R. ... ........... ... 113
2

5 The First-Factor Loadings Computed from the Three First

Eigenvalues .... ..... .......................... . ... 114

6 Rotation Methods and Their Criteria ..... .............. ... 121

7 Number of Computer Runs of Factor Analysis on Independent Data . 146

8 Relation Between Communality Estimate and Eigenvalues of

24-variable Matrix, With Sampling Error ...... ............ 149

9 Comparison of a General Factor in 24-variable Matrix as

Identified by Alternative Communality Estimates, With

Sampling Error ......... ......................... ... 150

10 Varimax Rotation of 41 Personal History Variables - 14 Factors . 162

11 Rotated Factor Matrix ... . .. ..................... .. 164

viii

. .0



EVALUATION

The purpose of this work was to study techniques in factor analysis ia
order Lo provide an objective and mathematical standard in the field. This
study was needed to make factor analysis a useful analytical tool for prac-
ticing engineers and scientists. Those areas investigated which have made
factor analysis less attractive for use as an analytic tool are: problem of
communality estimates, number of observations for a valid factor analysis,
uniqueness, and sampling effects on fadtor structure. Attempts were made
and were partially successful in storing these problems. The results of
this study are two fold:

(1) An attempt to explain mathematically the events occurring
during a factor analysis which can be understood by engineers and scientists.
This in turn will allow a practicing engineer to make an objective decision
whether he can use factor analysis as an analytic tol.

(2) Once an engineer decides to use factor analysis in his work,
a handbook or reference guide is provided which outlines a step by step
procedure for conducting a factor analysis; starting with the construction
of his experiment and ending with aids to interpret results. Computer
program descriptions are also provided including formats for inputting raw
data.

The results of this study have already b~en put to practice by members
of EMIIH in constructing an experimental clasoification model to be used for
automatic dissemination of technical documenti to engineers and scientists
in RADC.

RADC Project Engineer
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Section I

INTRODUCTION

1.1 BRIEF HISTORY

It is appropriate to begin the Introduction to this final report

with Truman Kelley's remarks made in his 1940 publication (Reference 1,

p. 120):

"There is no search for timeless, spaceless, population-

less truth in factor analysis; rather, it represents a simple,

straightforward problem of description in several dimensions

of a definite group functioning in definite manners, and he

who assumes to read more remote verities into the factorial

outcome is certainly doomed to disappointment."

This particular passage was also selected by Harman (Reference 2,

p. 5) to emphasize the simplicity of the problem and potential pitfalls
of understanding its solution. Regardless of what is done in

methodology or conceptual studies, an acceptance of the basic model
necessarily implies that the problem remains simple and the solution

remains ambiguous.

Since factor analysis was found useful around the turn of this
century by a psychologist, Charles Spearman, and described mathematically
by a statistician, Karl Pearson, the development of techniques has
more or less followed the lines of the empirical school. That is,

methods to obtain factor solutions have evolved more from the necessity

of describing certain underlying psychological entities by meaningful

groups of hypothetical constructs than from an application of advanced

mathematical ideas to the basic mathematical problem. As a consequence,

factor analysis suffered from a lack of mathematical ordering of its
esoteric devices until Harry Harman, in close association with

Karl Holzinger, published in 1960 an excellent summary of most of

the significant factor analysis work which had been done to that time
(Reference 2). This book, Modern Factor Analysis, has been welcomed



into and adcepted by most of the factor analysis groups in this

country as a general reference guide useful in selecting an appropriate

method or set of methods. Its comparative presentations are very good.

The intent of this study was not simply a reiteration of Harman's

work with, perhaps, a few more up-to-date details. Rather it was an

investigation into a few of the unsolved, classic mathematical problems

with a demonstration of how too little knowledge of necessary assumptions

concerning these problems can be troublesome and at times devastating.

Attempts were made and were partially successful in solving the problems

of communality estimates, number of observations for a valid factor

analysis, uniqueness, and sampling error effects on factor structure.

1.2 THE MODEL AND SOME MATRIC NOTATIONS

Factor analysis is concerned with the study of an array of

numbers which has certain properties and contains information about

linear relationships among sets of data points. This array is called

a ccrrelation matrix and the numbers, or entries, are called'correlation

coefficients. The array is so constructed that the number in the ith

row and j th column represents the correlation, or degree of linear

relationship (y = ax + b), between the ith and jth sets of data

points. For 5 sets of data points such an array might look like:

1 2 3 4 S

1 - .6 .4 .3 .1

2 .6 .1 -.2 -.6

3 .4 .1 - .2 .1

'4 .3 -.2 .2 .8

5 .. -.6 .1 .8 -

Easily noted is that the number in the 4th row and 5th column is

the same as the number in the 5th row and 4th column, and, in fact, the

umber in the ith row and j th column (call it ri) is the same

2 sam0
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as the number in the J th row and ith column (call it r ji). This

property of symmetry, as well as others, will be stated more formally

a little later but is worth noting in a preliminary discussion on the

classic problems and the model.

The problems treated in this report are mostly those which have

caused mathematicians to reject factor analysis as a useful analytical

tool. Many of the reasons for rejection are unjustified--some are

justified. Those reasons which are unjustified concern the misunder-

standing or misuse of the basic model and/or assumptions necessary in

determining a "unique" solution.

The basic model stated simply is this: given a correlation matrix

for a set of data points with appropriately selected diagonal values,

determine a set of factors (or hypothetical variables) which when
linearly combined reproduce the original set of data points. In a

sense, then, the model is the same as for multiple linear regression

only the independent variables are replaced by hypothetical variables.

The big difference, of course, is that the final synthesis of original

data points is complete for all variables in factor analysis and.

complete only for the dependent variables in a regression.

Let us adopt the vector notation X to mean an ordered sequence

of values, or elements, ( x , ... , x.). Then in vector notation

the linearity of the model is seen to be

X. a.jF1 + aj2F2 +. + ajmFm + a U

where X. is the original set of observations, F1  through Fm

are the hypothetical common variables, or factors, U1  is the unique

factor, and the coefficients a through a. and a. are those
ii jm I

loadings required to reproduce X . The "linearity" of the model can
not be overemphasized. In most multivariate studies, it is at best a

crude approximation to inherent nonlinearities which occur in nature.

The model represents a compromise between synthesis accuracy and

computational feasibility, a comprow~se which is too often considered

inviolate for interpretation purposes.

0
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Before outlining the classic problems let us digress an instant

to review some matrix algebra and notation. A set of vectors arranged

in such a manner that the elements of the vectors form rows and columns

is called a matrix and will be denoted by a capital letter, e.g. R.

To illustrate further using the previous example:

1.0 .6 .4 .3 .1

.6 1.0 .1 -.2 -.6

R .4 .1 1.0 .2 .1 (rij)

.3 -.2 .2 1.0 .8

.1 -. 6 .1 .8 1.0

Note that the diagonal elements are ones, a classic problem we shall

dwell on shortly. The transpose RT  of this matrix is simply the

matrix with its rows and columns interchanged such that a typical

element r. becomes r... A symmetric matrix is a matrix which is

the same as its transpose-- R R in our example.

To review the four fundamental matrix operations:

A + B (aij + bij

A -B (aij -bij)

N
AR a b where N is the number of columns

1 i in A and rows in B

cA (ca i)

The row order of a matrix is the number of roWs of the matrix.

The column order is the number of columns. The determinant of a matrix

of orler N is the summation defined as follows:

4
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N
det A IAI (-l) aik det A(ilk)

k=1

where 1 S i S N and A(ijk) denotes a matrix with the i
th row and

kt h column removed. Starting with the determinant of a second order

square matrix (number of rows equals the number of columns) the idea

of using a determinant to define a determinant presents itself as being

the easiest to understand and illustrates the difficulty of deriving

another definition. A matrix is singular if det A = 0.

Some important theorems in applying matrix theory to factor

analysis are:

Theorem 1.1: det A det AT

Theorem 1.2: If all elements of any column (or row) of A

are zero, then det A 0.

Theorem 1.3: If two columns (or rows) of A are proportional,

then det A = 0.

Theorem 1.4: If A is square of order n, det (cA) = cn det A.

Theorem 1.5: Let A be a square matrix of order n. Then the

system of homogeneous linear equations A(X, X2, ..., X n AX = 0

has a nontrivial solution if det A = 0.

If we delete some rows and columns of a matrix A, the remaining

elements form a submatrix of A. A square submatrix of A is called

principal if its diagonal is part of the diagonal of A. The rank

of A is the order of the largest square submatrix of A whose

determinant is nonzero.

1.3 A STATEMENT OF THE CLASSIC PROBLEMS

As we mentioned previously, factor analysis is concerned with the

study, or factoring, of a correlation matrix. Having discussed the

* 5



logical mode of representing the matrix and associated items of

interest, let us restate the factor analysis problem.

Theorem 1.6: For every correlation matrix R there exists a

corresponding factor matrix F such that

FF R.

Furthermore,

Theorem 1.7: There exists an infinite number of factor matrices

F which reproduce any given correlation matrix R.

The problem, then, is not only to determine F but to find an F

which is most likely to satisfy a given set of initial conditions. A

factor analysis is done in two stages:

Stage 1: Factoring problem--find an F such that

FFT  R and also such that the column order

of F is the minimal rank of R.

Stage 2: Rotation problem--rotate the arbitrary reference

frame into a "preferred" or "simplifying"

position.

In Stage 1 we mentioned the minimal rank of R. Ordinarily the

rank of a matrix is fixed as soon as its elements are fixed. However,

the diagonal elements of R have special meaning in that they

represent the total variance of each variable. Due to the description

of the model in terms of both common and unique factors, the total

variance can be split into common factor variance (communality) and

unique variance. The factor analysis of a correlation matrix with

comunalities on the diagonal, the reduced correlation matrix, will

then yield only the common factor portion of the model. However the

proportion of total variance ascribable to common factors is

generally unknown. Thus, the matrix R is incomplete at the onset of

a factor analysis. The communality problem consists of finding those

diagonal elements of R that minimize the rank of R.

6



Once the rank of R has been established, the number of common

factors is known and F can be determined by a variety of mans (see

Section V). By a previously stated theorem, however, there are an

infinitude of F's which will do the job. The selection of the

solution configuration--in other words, the relative number of high

loadings pey, factor as well as degree of relationship among factors--

is another classic problem. Probably the most commonly selected

configuration is one called simple structure developed by

L. L. Thurstone and offers the psychologist an optimal balance

between statistical simplicity and psychological utility. There is

little reason to believe that simple structure is of any real value

outside the domain of a very special class of problems; however,

intuitively it represents what may usually be desired in a factor

solution (see Section V for detail).

Solution uniqueness is another classic problem which is important

in defining the general usefulness of factor analysis. Assuming that

a solution has been found which satisfies a given class of constraints

and boundary conditions, what can we say about the uniqueness of this

solution compared with a solution derived using another set of data

points from the same multivariate population? Both solutions will be

identical if infinite samples are used. However, from a practical

viewpoint only a finite number of samples are possible and, in most

cases, this number is small. Thus, the problem of uniqueness is

really an error analysis of sampling effects on bivariate statistics

and matrix operations.

Solution completeness is a problem which involves a decision to

stop the factoring process after enough factors have been found (or

extracted). This decision can be made in many ways depending on the

kind of factor structure being derived. There does not exist a

universal completeness criterion and the problem of completeness is

often thought of as really the problem of communality selection.

In Stage 2 the rotation problem was stated as being one of

finding a reference frame which provides a "preferred" or "simplified"

position. The rotational aspects of factor analysis are the most

7



difficult to either understand or implement. This problem is by far

the most imDortant since the factor analyst has an infinitude of

reference frames at his disposal from which he is to select one.

Consider a similar problem whereby a point (x, y) in a plane is

identified by its position relative to some orthogonal or non-

orthogonal axes. The meaning of "preferred" or "simplified" is

indeed vague and more or less has been defined by the analyst as a

solution which fits closest to his hypothesized factor structure. In

the case of a psychologist this factor structure has been characterized

by Thurstone's simple structure. There are other structures which

can be used, but they are not nearly developed to the extent of

Thurstone's work.

1.4 METHOD OF APPROACH TO THE CLASSIC PROBLEMS

Naturally the classic problems--those problems which have defied

analytical solutions--can not all be solved in one year of study.

The very implication would be most insulting to the scientists who

have spent lifetimes trying to clarify the intrinsic value of the

methods. However, the time is ripe to establish a mathematical

standard in factor analysis and provide mathematical explanations of

the infinite solution space phenomenon as it effects uniqueness and

other solution characteristics. The problems which have been

considered in this study are the following:

1. communality estimate and completeness

2. uniqueness

3. rotation and interpretation.

The communality problem was approached from the standpoint of

selecting diagonal elements which both minimized the rank of R and

preserved the Gramian property (symmetric and the determinants of all

principal submatrices are positive or zero). Several attempts were

made using various iterative schemes and the technique of bordering

has been found to solve the problem. Details of this technique are

given in Section IV.

The uniqueness problem was approached from two angles--perturbing

correlations and perturbing data. Correlations were bounded by

8
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standard error intervals based on the sample size and effects noted

on the factor structure. Data was randcmized according to hypothetical

correlations and distribution functions and new correlations derived

and factored. Effects were again noted on the factor structure and

empirical results are presented in Section IV.

The rotation and interpretation problem was approached through

regression analysis in an attempt to provide a measure of importance

for oblique or rotated factor loadings. The classic problem has been

to identify or interpret factors using the factor loadings. Results

are presented in Section V.

0



Section II

CORRELATION THEORY

2.1 INTRODUCTION

In this section we shall concern ourselves with the basic unit of

factor analysis: the correlation coefficient. Factor analysis

amounts to factoring a certain matrix, the correlation matrix, whose

elements are the correlation coefficients. In this section we

shall talk about these correlation coefficients. In 2.2 we shall

generally define correlation and the coefficient describing it. In 2.3

we will consider different types of bivariate correlation coefficients

and also compute examples. It will be seen that the coefficient most

commonly used is Pearson's product-moment correlation coefficient.

This coefficient will be interpreted geometrically in view of the factor

model in 2.4. Its statistical significance and reliability is then

discussed in 2.5. In 2.6 we consider how the product-moment correlation

coefficient can be derived if data is missing from one variable or the

other. In 2.7 we will touch briefly, for completeness, the areas of

partial and multiple correlation coefficients.

2.2 DEFINITION OF CORRELATION AND THE COEFFICIENT

In factor analysis we are interested in the interrelationship of

different variables, which we then analyze. But first we have to have

a mathematical tool to express interrelationship between variables.

This tool is given by the correlation coefficient.

Denote by X. and Xk  two variables each having values for N

individuals. We first make the two variables comparable by deviating

them, that is measuring their values from comparable zero points.

This is achieved by forming the deviates:

l N

X. = X - , x. -X. = the mean of variable X

and

N

xk Xk Xk_ Xk X Xki the mean ofvariable Xk

10



Basically we assume that the relationship between variables x.]
and xk  is linear, so that in plotting their paired values (xji, Xki),

i 1, ... ,N, in a coordinate system, with the zero point at the means

of the two variables, we can ideally lay a straight line through these

points. It will, though, obviously not always be the case that the

points be on a straight line. Then we try to fit a straight line to the

points. Expressing the points on the line by i, then the line can

be described by

xj = a =]ii axkl , i I,,..,N,

where a is called the slope of the line. The slope shows the

relationship between xi and xki, i 1,...,N. If a = 1,

xii = xki and the relationship is perfect; if a 0, there

does not exist any relationship between T.. and xki, i = 1,...,N.

So we are interested in a which will later constitute our coefficient

of correlation.

Tji = axki is a line "fitted" to the points. The condition for

it is a "least square fit", that is,

N
I (x -

. )2 minimum.i=l 31

Then we have

N N(X 2  (X i- k>

ji ] ij1 i 'ki

N N N
Sx?. -2a x xx + a2

1i=l ki i=l

with the condition to choose a so that this expression is a minimum.

Therefore we differentiate the expression with respect to a and set 7

the result equal to zero, obtaining

NN
-2 l x..x + 2a X 2 0.

i@l )ki +I!



Therefore,

N

) xjixki
a = N

i 1l

This .s the formula for the slope of a line fitting the trend of paired

measures so as to minimize the x. residuals. It is called the)
regression formula for x on xk . Dividing numerator and denominator

by N yields

N
J x ji 

a
N x2

i1l

We have

N 02 the variance of X.

Thus

N

a
N02

The slope a, however, is still greatly affected by the relative

variabilities of the measures x. and xk. We make x. and xk

comparable by dividing them each by their standard deviation. Calling

Z. x./a. and Zk  = Yak standardized variables, and naming the

slope in this case r jk we obtain

12



i.ki jk.ki 'j

S r -, k , i 1 ... ,N.

From this follows

a rj"k
, or r. = a -,

and hence,

N N N

i=l •a ikl i=l ZjidZ

rjk Na2  a. Na k  N
k 3 k

rjk is called Pearson's product-moment correlation coefficient between
the standardized variables Z. and Zk .

2.3 TYPES OF CORRELATION COEFFICIENTS - BIVARIATE

In Section 2.2 we have derived Pearson's product-moment correlation
coefficient. Besides this correlation coefficient there exist still

other correlation coefficients, partly derivations from Pearson's r
to take care of a specific nature of the variables.

In the present section we want to sunmarize most of the important

correlation coefficients. We shall do this in a systematic way. So we
shall define in A. Kendall's General r-correlation Coefficient, from
which 1. Kendall's T-, 2. Spearman's p-, and also 3 Pearson's
r-correlation Coefficients can be derived as special cases.

Next we shall consider in 3. Correlation Coefficients for
Dichotomized Variables (i.e. variables which are given by their

frequencies in two classes). We shall discuss in % The Biserial
Correlation Coefficient (a correlation coefficient for two variables,

of which one is dichotomous and one has quantitative scores) in
2. The -coefficient (a correlation coefficient for two variables,

.1 13
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which are both truely dichotomous) and in 3. The Tetrachoric

Correlation Coefficient (a coefficient for two variables which are both

dichotomized from underlying normal and continuous distributions).

In C. we sball briefly consider Miscellaneous Correlation

Coefficients by referring for the most part to some specific papers.
These coefficients will be 1. The Contingency Coefficient, 2, Yule's

Coefficient of Association and Yule's Coefficient of Colligation, and

3 .Thorndike's Median Ratio Coefficient of Correlation.

Part D. then presents Examples to the aforementioned correlation

coefficients.

Our discussion of all correlation coefficients will be very brief,
mostly only a statement of the assumptions and of te basic definition. For

standard error formulas and correction formnulas one :, referre M the

references.

The answer to the question what correlation coefficient one should
apply in a specific situation is given by the assumptions of the single

coefficients, which are different for each coefficient.

A. Kendall's General r-correlation Coefficient

In the following we will consider the definition of the so-called
Kendall's general r-correlation coefficient (Reference 3). We will
state the necessary assumptions, the definition, and then we will derive

three correlations coefficients from this general correlation coefficient,

namely (i) Kendall's T-correlation coefficient.

(2) Spearman's p-correlation coefficient.

(3) Pearson's product-moment correlation coefficient r.

Assumptions: A sample of N objects (subjects, individuals,

observations, measurements) is considered relative to two properties
(continuous variables) X and Y, exhibiting values X1 ,..., XN

and Y,...,y N according to X and Y. To any pair of individuals i
and j we will allot an X-score, denoted by aij and a Y-score b1 j.

subject to aij -aji, bij -bji.

14



Definition 2.1: Kendall's general r-correlation coefficient is

defined as

N
, aijbi.

r j J

N N

with aij = 0 if i j.

Now let us adopt three special methods of scoring and derive

Kendall's T-correlation coefficient, Spearman's p-correlation coefficient,

and Pearson's product-moment correlation coefficient r.

1. Kendall's T-correlation Coefficient

Assumptions: Suppose the values X 1,... ,XN are ranks, where we

adopt the following definition for the term rank:

Definition 2.2: If N objects are arranged in order according to

some property, which they all possess in a varying degree, the objects

are said to be ranked. Each object has a rank, expressed as a natural

number between 1 and N.

Denote them by p '* .N" Correspondingly denote the ranks Y ,...,Y
N I N

by q1,...,qN. Consider the pair of individuals i and j. Choose the
following scores:

a.j = 1, if Pi p pj bij = 1, if pi < Pj

and

aij = -1, if Pi > PJ bij = -1, if Pi > Pj.

* 15



Considering then the denominator in

N

N N!
I~ ~~ a?. nubro em j N 2! NN 1

iij1jiji

wea bsrv

N
ba. numbe oftrm). N (N 1

denminto = ~ AN( - )NN 1 (N ).

a osdrngtenmraowdbsreta

N

Therefr w se b ta cr smo ubrof(l-crsadnme

denominatcor) twice beas a)ny gie par1 ) occur onc 1).

(i C)don ering j i thenmrtwe oservmatn Wetrfoeban

1 aj~b 2S,
iNjU 1)

16



2. Spearman's p-correlation Coefficient

*(Other names: Spearman's rank correlation, Spearman's rank

difference method)

Assumption: Choose the following method of scoring:

We have

N N
Sa?. b?.

* or

N N
S (p. p.)2  (q. q q) 2

Then

N
I (p. - )(q. i

r i,j~l -

IN N
(p p.2 (q. -i)

N

- i,j~l
N

£ X (p. - p.)2

* 17



Considering the numerator,

N N N N N N

(P ) p(q. qi) p.q. + piq,

N N
- X (piqj + pjq.)

N N N

2N Yplq1-- 2 pi qj.

2N N i [(1 + N)

N N2  1+N'2 .
2N I y

Pi1

DenQ~te by S(d) the sum of the differences pi q., Ii,..N Then

N N NN

S~~d2) (pi-qi)
2  p? -2 i + q

N N

p2 2 '1 pi

and therefore

N N

We therefore obtain for the numerator

18



N N N
I (p. p.)(q. -,q.) =2N p? NS0d2) N2 I +(1 t

- N2(N2..1) -NS(d 2 )
6

Considering now the denominator

N N N N N N N

;N N N

2N P? 2 Pi 2( p)

02N[l N(N + 1)(2N + 1 - (1 + N)]2

1 'N2(N2 1)
6

Thus

LN7(N2 - 1) -NS(d 2)
6

~N2(N2 -1)

Denoting r by p, we obtain

6S(d2 )

N(N2 - 1)

3. Pearson's Product-moment Correlation Coefficient .r

Assumptions: a. X- X.*j x 1

19



Then

N N

i~jj==

NNNN N N N N

1= =t i=1j=1 ic i~j:1- i:1 J=1

-# N N N N N N jNN
i~j J1 yy)2)j ~ X.X.+ xI i~ Yli=1 j=i I i=i )=i 3 i=1 J I ii l

N N N
2NJ XY -2 Y jX.

31 i=1 J-1.

IN N N

NN

N
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where

NN
x Yi

x- and 1.l

N N

The product-moment correlation coefficient is mostly considered with

standardized variables, that is with zero mean and unit variance of the

variables. To achieve this

N

N

N-j N

N N N N

N N N N

+X2 (L)~ ~2 ~

N
I (X.- - Y -

N

X1 3 )2)( 
(Yj )

Let

x. 2X. -X

3
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N
X N '

Zj 

=
N

j

Nx a
j a,

zj

and a

i yj

Then

N

I XxYyj

Ni J

N

I z Z,

Remarks: Depending on the method of scoring the difference

between the observations i and j for one variable, one obtains from
Kendall's general r-correlation coefficient the T-, p-, and r-coefficient.
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The scoring for T is therein the simplest one, assigning a 1 or -1

to this difference, thus not looking at all on how far apart the two

observations are. The scoring for .p is more involved, taking into

account the actual difference of the observations by way of their ranking

difference. For this reason p can be considered as the product-moment

correlation coefficient between ranks. Scoring for r takes into

account all the information by way of the actual difference between the

measurements.

The choice of either one of the coefficients will depend on the.

data available. If actual measurements for continuous variables are

available r is preferable to p and T. If only data in the form of

ranks are available, p is preferable to. T.

Pearson's product-moment correlation coefficient is the most

important correlation coefficient for factor analysis, since its

assumptions--rectilinearity and continuity of the variables, made for

the derivation of this coefficient--are the ones which are mostly

fulfilled by the variables involved in factor analysis.

B. Correlation Coefficients for Dichotomized Variables

1. The Biserial Correlation Coefficient

Assumptions: Let X. and Xk be two variables. Consider one

of them, say X., as dichotomous (or being reduced to dichotomy) under

the assumption though, that it is really continuous, while we have only

categorical information. Assume further that the dichotomized variable

has a normal distribution, that the whole sample distribution is present,

and that the two tails of-the distribution fit together into a whole

normal distribution. Looking only upon the two tails would make the

coefficient, which will now be defined, too high. Consider the second

variable Xk as having quantitative scores, no assumption made about its

distribution. Assume a sample size of at least 50.

Denote the two categories of X. by X. and X. . Let N be
the total number of individuals, the sum of the number of individuals

N for X. and of the number of individuals N2 for X .
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Definition 2.3: The biserial correlation coefficient is defined

as

r P

where the following notation is adopted (Reference 4):

M = the meanscore on X. of the individuals in categoryp 2
X. or X.2, whichever is the larger

ji j

Mt = the meanscore on X. of the individuals in X l
and X. together

2

at  =the standard deviation of X. for the entire distribution

N N
p the proportion N or , whichever is corresponding

to the category with the higher mean on X

Y the ordinate at the point of truncation of the normal

distribution

Remarks:

a. If the dichotomized variable cannot be assumed to be
continuous and normally distributed, Richardson and Stalnaker (Reference 5)
suggest another form of the biserial correlation coefficient.

b. If one wants to look only upon the two tails of the distribution,
which is often wanted in educational and sociological research, in

other words, if one wants to look upon so-called "widespread classes",
Peters and Van Voorhis (Reference 6) suggest a "biserial correlation

coefficient from widespread classes".

c. Pearson (Reference 7) suggests a coefficient, called biserial
eta, based on the assumption that one variable is given by alternative

and the other by multiple categories.
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2. The *-coefficient

(Other name: Four-point Coefficient)

Assumptions: The two variables under consideration have to be

truly dichotomous. Let. X.3 and Xkbe two variables with categories-

X .i, X j and Xkj Xk .respectively. Then establish the following

table of frequencies a, b, c, d. Let the four cells be consistent

with the quadrants of a coordinate system, represented by the signs.

Xk C2x2-fold table)

~Xk +Xk2

+X. a b a+ b

x.

-X. c d c +d
12

a~c numbe of mea;surements,

total frequency

Example

X k sex

women X2=men

Xj, employed a b a b

X. employment _____ ______ ______

X.j unemployed c d c +d

a +c b +d N

e.g. a =number of employed women
b =number of employed men
N =number of women and men, employed or unemployed.
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Definition 2.4: The O-coefficient is defined as

(bc) - (ad)

V(a + b)(c + d)(a + c)(b + d)

a. If we assume X. and Xk to be dichotomous, while they are

actually continuous, the O-coefficient is to be considered as an estimate

of Pearson's r. In order to obtain a good estimate of r a table

(Reference 8) is available which gives a value k, by which * has to

be divided.

In general 0 divided by k corresponds very closely to

tetrachoric r (the correlation coefficient which is customarily

applied to dichotomized, but really continuous data). So, if computing

diagrams for tetrachoric r are not available, 0 might be the most
k

approximate measure for tetrachoric r.

b. In order to cut out the influence of extreme values, which go

into the computation of the 0-coefficient, originating from extreme cuts

in the distribution, 0 is better divided by the maximum possible value

consistent with the given marginal values, 0 max. 0 divided by

0 max is probably the best correlation coefficient in use for

dichotomized variables .*

3. The Tetrachoric Correlation Coefficient

Assumptions: Let X. and X be the two variables under
I k

consideration. Assume that the data for both variables tre in terns of

dichotomies, but that both variables are really continuous and normal

in distribution.

Definition of the Coefficient: The statistical considerations

necessary for the derivation of the tetrachoric correlation coefficient

are extensive. We will state here two of the formulas, used to compute

the coefficient.

Again denote the two categories of X by X i, Xj2 and the
categories of X by Xkl, X k2 a, b, c, d are notations for

frequencies.

E. E. Cureton. Note on 0/4 max. Psychometrika, 1959, 24, p.89.
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+Xk-Xkl Xk2 -

X+ x a b
-X. c d

j2

The statistical derivation terminates in a formula involving

double integration, which can be solved for the tetrachoric correlation

coefficient r, yielding a very complicated formula for r (Reference 9).

In putting the restriction upon the problem of cutting the

distributions at the mean, the following formula for the tetrachoric

correlation coefficient can be arrived at:

r sin 2n (bc - ad)0 2  , N :a+ b+ c +d.

The assumption of equal dichotomies might be a crude one for certain

problems. So, Pearson develops (Reference 9) empirical formulas that

give approximately correct r's, the man error in 15 trials being

less than 4 per cent. The simplest of these approximate formulas is

the following one

r Cos Vag
/a'd" +

where no restriction is put on the point of dichotomy. H. W. Eber

(Reference 10) uses this formula for computing a correlation matrix

for 3,000 variables.

Remarks

a. In order to facilitate the labor involved in computing

tetrachoric correlation coefficients, Chesire, Saffir, and Thurstone

(Reference 11) prepared a set of computing diagrams. These diagrams
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are advisable to be used whenever the coefficient is not required to

be of high accuracy. Other diagrams are designed by Hamilton

(Reference 12).

b. As for the biserial correlation coefficient Peters and
Von Voorhis (Reference 6) develop a tetrachoric correlation coefficient

from widespread classes.

c. The tetrachoric correlation coefficient is one of the

coefficients for factor analysis more often used besides the product-

moment coefficients. To use this coefficient is thereby a necessary

condition, if the data arm rportod Sn dichotomies only. If the

dichotomies are derived, though, by cutting continuous data at some

point, it should be strongly considered to employ product-moment

coefficients instead, since the tetrachoric correlation technique loses

some of the available information.

C. Miscellaneous Correlation Coefficients

1. The Contingency Coefficient

The contingency coefficient is applied when variables X and

Xk both can be classified into two or more categories, and when these

categories are not quantitative but qualitative. The formula of the

contingency coefficient makes use of the chi-square statistic.

Definition 2.5: The contingency coefficient is defined as

Under certain conditions C is equivalent to Pearson's product-

moment correlation coefficient. If the variables are continuous

correction formulas exist, see References 13, 14, and 15.

2. Yule's Coefficient of Association and Yule's Coefficient

of Colligation

In connection with the 0-correlation coefficient Yule (Reference 16)

considers two correlation coefficients, based on a four-fold table:

28



Definition 2.6: Yule's coefficient of association is defined as

bc - ad
ad + bc

Definition 2.7: Yule's.coefficient of colligation is defined as

The coefficient is equal to *, if the four-fold table is "equalized",

that is

3. Thorndike's Mecian Ratio Coefficient of Correlation

Thorndike (References 17 and 18) developed a correlation coefficient,

which, under certain conditions (Kelley, Reference 13).is equal to the

product-moment correlation coefficient.

Let the variables x. and xk be deviates from the mean and let
j

aj and ak be corresponding standard deviations. Supposing the relation

of variables x. and xk to be rectilinear the coefficient of correla-

tion; defined as follows, represents an inference about the general drift

of the relation.

Definition 2.8:

Thorndike's median ratio coefficient of correlation is defined as

r median of the 2N ratios
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and

Xki/ok
x /oa ,i --l..., N.

For simplifying computing formulas see Thorndike (Reference 17). See

also Kelley (Reference 13).

D. Examples

1. Example for Kendall's T-correlation Coefficient

The coefficient is

S
N (N-1)T

Before computing the coefficient on the basis of the data in Table i,

we have to consider briefly how to take care of ties in the data. Let

t(u) be the number of equally ranked individuals, then there are
1 t(t-l) pairs to take care of.

Denote by T t(t-)
2t

U U(u-l),
t

where means summation over all sets of ties.t
Then T is computed as

S

-N(N-1) - T -N(N-l) - U
2 2

This is the appropriate form of T if ties arise in the data. The

computation will be clear from the example. The formula is stated

and discussed by Kendall (Reference 3).
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Table 1

Measurements for Two Variables--Weight and Height on 10 Individuals*

d rank
Individual Ranks Weight X Ranks Height X difference d21 2

A 6 165.00 8 177.80 -2 4

B 1 189.50 1 187.60 0 0

C 10 128.00 10 169.00 0 0

D 9 144.00 45** 181.50 4.5 20.25

E 7 156.50 7 179.70 0 0

F 8 145.50 9 172.90 -1 i

G 5 166.00 4.5** 181.50 0.5 0.25

H 3 178.00 2 185.30 1 1

I 2 182.50 6 181.00 -4 16

j 4 167.50 3 182.35 1 1

The measurements for the 10 individuals were picked randomly from a

set of measurements for 130 individuals.

** Individuals D and G are tied for ranks 4 and 5. It is common

use to rank each individual by the average of the tied ranks.
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To find S we have to compare each individual i with each individ-

ual J. We score

ajj i, if Pi 4 Pj

ai -1, if Pi > pj

aij O, if Pi = Pj

Listing the results, also for bi , we obtain:

Individual i Compared Scores Individual i Compared
with Individual j Multiplied with individual j where
i.j A,B,...,J forX ij AB,...,J for X2

A withB - 1 -1
C 1 1 1.
D 1 -l -l
E 1 -l -l
F 1 1 1
G -l 1 -l
H -l 1 -I
I -l 1 -1
J -l 1 -l

B with C 1 1 1
0 1 1 1
E 1 1 1
F 1 1 1
G 1 1 1
H 1 1 1
I 1 1 1
J 1 1 1

C with D -l 1 -1
E -l 1 -I
F -l 1 -l
G -l 1 -1
H -l 1 -l
I -l 1 -l
J -l 1 -l
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Ithdividua. i Compared Scores Individual i Compared

wit Idivdul M~ultipl.ied with individual. j where

i t h I n d i v i d u a o rl i ~ A B ... ,j f o r X

D with E 
-.- 1

F 01-

G -. 00

F withf 1G*

G wit 1H-

H -1t I.-

I withG J11-

T h e n~ -. r - o r s

Twth -1 0, thr-r1o isi

U1 =-( 1 1 t e e i on t e in-X1

Thenweoti

2 6-8 2

ItO~)_ is1 l-

0.28
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2. Example for Spearman's p-Correlation Coefficient

The coefficient is

6S(d 2 )
p - -N(N-1)

Also in Spearman's p-correlation coefficient we have to take care of

ties in the ranking of the two correlated variables. 'iypify ti-, tie3

by t and u and define

T 12i! t(t2t)

t

U 2 u(u2_u)
U

Then Kendall obtains two equations, deducing them from the general r-

coefficient:

p = 1- 6(S(d)2 + T +u) (1)
N(N2 - 1)

or

1 (N2_l) -S(&) - T - U6
. (2)[1N(jq2_l)_2",) I X(N2-_2U]

For our data of Table 1 we obtain

T =0

U 1 2(22-2) =12 3
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Then for Equation 1

6143.5 +

990

-0.734

Equation 2 yields

(990) - 43.5- -

(990) - 0 1~ (990)-

-0.736

3. Example for Pearson's Product-Moment Correlation Coefficientr

We shall use the following form of the coefficient

N,: Y

We again will use the data from Table 1:

Therefore

*X X ,Y X N 1~0.
12

Then one computes
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10 X X
I 'j 2.I 29262.37
J:I 10

71 10 . = 1 6 2 2 s, n 26325.06

10 X

10 X2 179.87, '9 32353.21
210 2

10 X2

0 j 26652.02
j:Z

10 22: 32378.72
j=l1

and one obtains by substituting these values in the formula for r.

r = 0.859

4. Example for the Biserial Correlation Coefficient

M" M

We shall use the coefficient to determine the relation between the

variable X, = size of family and variable X2 = tendency of children

to leave school before the age of eighteen. The data of X2 a.: given

by the two categories: X 2 children, who remained in school according21
to the size of family, X22  children who left school according to the

size of family. The data are laid out In ';'bl 2.

36
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"fable 2

Data for an Example of the Biserial Correlation Coefficient

Size of Family Children remaining Children left Total.

X in School X school X (f
1 21 *22 1

(Class Marks X.) (Frequencies f ) (Frequencies f ) t f .)
ii 2] 2)

12 2 2
11 4 3 7
10 4 2 6

9 4 8 12
8 20 3 23
7 10 17 .27

6 24 12 36

5 18 18 36
4 30 10 40
3 34 12 46
2 34 10 44
1 16 5 21

200 100 300

The example is from Reference 6 and the measures are from

Reference 19.

Let us first compute the meanscore on X in categories X
221

X2 2 , and X 21t X . Using the mean formula for grouped data:

12 f .- ) = 2'12 + 411 +'-" + 16-1 = 914 =
21 =1200 200 -- 200 173=1

12 f2 A) 3"11 + 2"10 ... + 5-1 531X2 = - = = - = 5.31
22 z0 100 00

12 (f . + f .)x.21+_2_3-_023 2 12 + 7" 11 +,- - 21"1 144513 . a 2)= -- 4. 8221 22 3j= 300 300
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0
Such that

H = 5.31
p

Ht = 4.82

Now we compute the standard deviation of X 2  for X 21 x 22 We use

again the fornula for grouped data:

• 1 (fl 1 " 2)( -X 2 1 + X22 )2

t= 300

2(12 - 4.82)2 + 7(11 - 4.82)2 +. . 21(1 - 4.82)2
300

= 2.57

and

100 0.33

iF 300

Then y = 0.3635 , as taken from a table by Peters and Van Voorhis

(Reference 6).

We now compute r as:

r= 5.31- 4.82 (0.333 0.175
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5. Example for the *-coefficient.

The 0-coefficient is computed from a four-fold tables as are the

tetrachoric correlation coefficient and Yule's two coefficients, the

contingency coefficient can be computed from a four-fold or a manifold

table. We will now demonstrate all above mentioned coefficients from

an identical four-fold table, which will only be interpreted differently

for the single coefficient under consideration, in order to allow for

the special assumptions of this coefficient.

The 0-coefficient

bc -ad

V(a'+ b) (c + d) (a + c) (b + d)

we will lay out the data in Table 3.

Table 3. Data for an Example of the 0-coefficient

X
X21 2 X2 2

X a = V5 b = 849 a+ b = 514

X c = 1281 d = 205 c + d = 1486

a + c 1946 b + d 1054 a + b + c + d = N
= 3000

An interpretation is given: We want to determine the relationship of

employment status (X ) and sex classification (X2 ), where both X and
X2 are given by two cateories X11  being employed, X12 being

unemployed, X21 = women,, X22 men, So, e.g., a = 665 represents the
number of women, questioned in a sample of 3000 men and women (19J46 women,

1054 men), who were employed out of the 1946 women in the sample. Note,

that both variables, sex and employment are truely dichotomous.

We obtain
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849 1281 - 665 205
*'1514 ° 1486 - 1054 ° 1946

Q443

That is, the relation between sex classification and employment status is

a positive one. That means, for the data under consideration being a

man and being employed are positively related.

Connected to the O-coefficient are Yule's two coefficients. Their

computation from the data in Table 3 gives the following results:

Yule's Coefficient of Association:

bc - ad
' ad+ bc

849 * 1281 - 665 * 205
849 ° 1281 t 665 ° 205

0.776 .

Yule's Coefficient of Colligation:

a a-d -849 • 1281 + /65. 205

/a- VS /V .849 -1281 + A'65' 205

0.477

6. Example for the Tetrachoric Correlation Coefficient

We will use the cosine-formula of the coefficient

r =cos I-
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and apply it to the data of Table 3. As an interpretation of the four-

fold table, consider the case that we have a sample of 3000 teachers

divided into successful and unsuccessful ones and that we have infor-

mation about how many of the successful and how many of the unsuccessful

teachers have taken courses in pedagogy beyond 6 hours or less 6 hours.
We want to know the relationship of teacher success and taking courses

in pedagogy.

We set

X= teacher success--X successful

X12 unsuccessful

x 2 courses in pedagogy--X 2 beyond 6 hours2 21

= less than 6 hours.

Note, that one can think of both variables as being continuous, though

they are represented as dichotomous.

r Cos /665 * 205

/665 205 + /849 * 1281

0.6811

The tetrachoric correlation coefficient computed from the tables of

Pearson and his students has the value r 0.6633 for the above data
Chesire, Saffir and Thurstone compute a value of r 0.6638 for

the considered data by their computing diagrams.

7. Example for the Contingency Coefficient
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The coefficient

could be applied to determine relationship between two variables, each

described in more than two categories. Let the variables, for example,

be eye color of fathers (X) and eye color o- sons (X2) . Each

variable may be divided in many categories: X11 and X21 brown

X12 and X22 = grey, X1 3 and X23 = blue and so forth. We will apply

the coefficient, though, to data reported in a four-fold table, thereby

assuming that each variable above has only two categories. We will use

the data reported in Table 3.

We will make use of a simple computing formula for X2 for the case

of a lour-fold tlle:

N(ad - bc)2

X2 (a + b) (c t d) (a t c) (b t d)

proved for example in Reference 20.

We obtain

C N(ad-bc)2  N (ad-bc)2

(a+b) (c+d)(a+c)(bs d) + (a+b)(c+d)(a+c)(b+d)

N(ad-bc)
2

N(atb)(ctd)(a+c)(b~d) + H(ad-bC) 2

-849 • 1281 + 665 - 205 0.105

V1514 - 1486 a 1054 * 1946
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8. Example for Thorndike's Median Ratio Coefficient of Correlation

r median of the 2N ratios

and

ik k

We want to apply the coefficient to the data of Table I.

Then

X,=weight

x 2 =height, and N 10

We first have to set x Ii x2,, i 1'...,l0, as deviates from the respec-

tive means. The means are. x, = 162.25 and x 2 179.87. Subtracting x1
from all x1. i = ,... ,10 and x from x 1,i ,...,10, we can

2 2i
compute the standard deviations as

10 ~1 X2.
j~ 1 * 2 10

to get

1, 18.08

a = 5. 22
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The ratios. y = xi /I and z x 2 i- 1,...,10, are formed

next. And then y/z and z/y are considered. Their median furnishes

Thorndike's correlation coefficient. It is computed as r = 0.872 from

the data of Table 1. Note its rather good agreement with Pearson's

product moment r = 0.859.

2.4 GEOMETRIC INTERPRETATION OF PEARSON'S PRODUCT-MOMENT CORRELATION

COEFFICIENT

In this section we want to interpret the correlation coefficient

(if we talk about the correlation coefficient, we mean Pearson's product-

moment correlation coefficient) in view of its geometric aspects with

respect to the factor model.

Let us then assume an N-dimensional Euclidean space with a rectan-

gular Cartesian Coordinate System, whose origin is denoted by 0:(0,...,0)

and whose unit points are denoted by E1:(l,O,...,0),...,EN:(O,...,O,).

Let us interpret the n variables Z as points represented in this
system, the points and their coordinates denoted by

Z. :(Zjj,...,Z_.N ) = Z.:(Z.i). Such a representation for each of the a
variables can be called a vector representation, each Z being named

a vector. Let, further on, the N lines OZ (i =,...,N), each passing

through the origin and one of the unit points be called coordinate axes.

Now let us make the following definitions:

Definition 2.9: For any two points Z.:(Zjl,... IZJN) and

Z,:( 9l,...,zN) their distance is defined by

D(ZjZk) a (zj - Zki)2

If the distaoc of a point Z. from the zero point is considered, It is3
called the norm denoted by

Ne

D(OZ)= D(Z) = J' Z

44
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Definition 2.10: Let the norm D(OZ.) be denoted by p. Then the

angles, which the line OZ. makes with the axes, denoted by

e..i = z i0Zj, are called the direction angles of the line and their

cosines are called the direction cosines,. denoted by X. j -= os e i

From the definition it follows that X.. cos e. ./.i0,. N
]I j JI zJi J

Now the following interesting- impLications can be made.

a. From

D(OZ. JN Zi?

follows

N

since

=cos
2 

0..

it follows

N
N N N Z? E Z?.

N N. ~ o 2  .. =i=l 1I

ill J- 1 J-i10 . N

That is, the sum of the squares of the direction cosines of a line in

N -space is equal to unity.

b. Next, denote by x.. and xjthe direction cosines of the

vectors Z. and k
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Then

ii 
j.. = P

and

Zki
ki -Pk...,.

We are now interested in the angle of separation of two lines in N-space,

precisely said, in the cosine of this angle. We can derive an appropriate

formula by using the direction cosine formulas and by referring to the

trigonometric properties of a triangle in the plane, visualizing that, if

two lines meet in a point, a plane can be drawn through the point contain-

ing the two lines. If the two lines do not meet in a point, a line can be

drawn parallel to one of them, so that the line and the parallel form the

angle we are interested in.

Denote the vertex of the angle by P:(pi), the angle by *jk' and

distances as follows: D(PZ ) = a, D(P ) b and D(Z zk  d. Then we

can draw the following picture:

: b " :(Zji )

The coordinates of ZI and Zk can be expressed

as

Zji pi + a. 1ji, i,...,,

Z i = pi + bAki i=l,...,N.
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Then, applying the law of cosines, we obtain

d2 a2 t b2 
-2ab cos'. j .. (3)

Applying the distance formula we obtain

d2  (D(Z Z ))2  (j k)

N

i~ ((p. + aX..i) -(pi + bIA )J2

) i ki Jii k

-a2 + b2  2ab A 4

This implies by idtentification of ters In e~quations 3 and 4:

N
Cos i~ j Xjiki

Thlat is, the cosine Of the cu-igle of separation of two lines is given by

the inner product of corresponding direc tion cosine vectors (A X IX

and (Xl..,kid.

c. Since

Z..
X..~

31 3

ki 
k
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we obtain

N N Z 1 Z
cos k = i A ji ki =  P[=O~

It is

- Z 2

N

since

standard deviation

1, for standardized variables Z .

Thus

N Z..Zi I Z Z
Cos jk j " i l N jk ' k-l,... ,n.

These considerations yield the result, that the coefficient of correla-

tion between two standardized variables is the cosine of the angle

between their vectors in il-space.

d. Our geometric interpretation of a correlation coefficient, so

far, started with the consideration of the given raw data, namely the

n points Z. :(Zji) in N-space. Then the cosine of the angle between

two such vectors in A-space constitutes the coefficient of correlation

between two variables.
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Now we assume a correlation matrix R, computed from the raw data,

and a factorization of this correlation matrix. According to the mathe-

matical model underlying factor analysis each variable Z. is now
I

expressible by

Z. a. F + a. F +...+a. F + a.U., jl,... ,n,] i 1 1 2 2 jm m j'

where the loadings a..(i=l,...,m) were obtained from the factorization.

In this representation the n vectors Z. are considered in the space
of m common factors and n unique factors, the total-factor space.

The vector representation of Z.(j=l,... ,n) in this space is denoted by

Z:(a , a2 am , 0,..., 0, ai 0,..., 0), the a..(i1,...,m) denoting

the coordinates of Z! with respect to the common-factor axes, the 0 and

a. denoting the coordinates of Z! with respect to the unique-factor

axes. We now assume, that the system of common- and unique-factor axes is

rectangular, that is, all factors are mutually orthogonal. Then the angle

of separation of two vectors Z' and Z , represented in this system, is,

according to the. formula, discussed in (b)

m+n m
cos Ot. = 1 j,k=l,. ,n.

Since

fm

= a. + a? 1, for j=l,...,n,Oj

(Since

m a. + a? = total variance)

it follows that

m
cos *,ajiki r J .

jk aj k~ l,...,n.
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Thus we obtain that the reproduced correlation coefficient (from the

pattern of loadings) of any two variables Z., Z is equal to the cosine

of the angle between their vectors in the total-factor space.

e. Our last consideration informed us about how a correlation

coefficient is described if the variables are assumed to be represented

in the total-factor space.

Finally, in factor analysis one usually does not consider the total-

factor space but the space of m common factors only, that is, one regards

the n vectors contained in an n-dimensional space, determined by the m

factors. To obtain this m-dimensional space one considers the orthogonal

projections of the n vectors from the total-factor space into the canmon-

"oretor s!VCe o" m dlrv.:ni';on and deines these orthogonal projections to be

the vectors representing the variables in this space, denoted by

Z":(ajl, aj ... ,i). j~l,...,n°

We assume a rectangular coordinate system to be set up in the common-

factor space.

Considering now the angle of separation of two vectors Z' and 2

represented in this space, one obtains: a

m m a..aCos A ,i ki , k~l,...,n.
)k i njk

where

i l 
j l ....

(with h? communality),
)

so that

cos I J kak.
]k i~ h.h

i~l -k
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and from (d):

Cs "jk =r"!

s k hjhk )k k=l,..n.

Hence the cosine of the angle between two vectors which represent variables

in the common-factor space is equal to the reproduced correlation coeffi-

cient, divided by the product of the square roots of the communalities of

these two variables. We may call the obtained correlation coefficients

rl "the correlation coefficient between Z'! and Z corrected for unique-jk I K
ness", since only if the two variables do not have any unique variance

would r" be equal to the reproduced correlation coefficient r!
jk ]

2.5 SIGNIFICANCE AND RELIABILITY OF PEARSON'S PRODUCT-MOMENT CORRELATION

COEFFICIENT
A statistical consideration that can be made on a Pearson product--

moment correlation coefficient rjk is the determination of its statistical

significance. Since statistical significance of rjk is dependent on
sample size N, the following considerations will give us some important

information about this dependence which we shall utelize even more at a

later stage.

Let us first briefly consider what is meant by statistical signifi-

cance. In statistical considerations mostly only sample informnation is

available, on the basis of which one tries to make decisions about the
population, from which the sample was drawn. The decisions are called
statistical decisions. In attempting to reach decisions, one then makes
assumptions about the population involved. These assumptions, which may

or may not be , are called statistical hypothesis. They mostly are
statements about the probability distribution of the population in
question. If we assume a certain hypothesis to be true and then find

that results observed in a random sample differ markedly from those,

which we expected under the hypothesis on the basis of pure chance
using sampling theory, we would say that the observed differences are

significant. We would then reject the hypothesis. Procedures which
make it possible to decide whether to accept or reject a hypothesis or

to determine whether observed samples differ significantly from expected

.. . 5'7.



results are called tests of hypothesis or tests of significance. When one

tests a hypothesis, the maximum probability with which one is willing to

risk the error of rejecting a hypothesis when it should be accepted is

called the level of significance of the test. Usually a 5% level of

significance is chosen, that means we are 95% confident, that we have

made the right decision in accepting the hypothesis. If we now consider

a sample statistic S and if the sampling of S is approximately normal,

then we can be confident of finding the mean p, of the sampling distri-

bution of S in the interval S.- 2aS to S t 2aS  95.45% of the time or

in the interval S - 1.96aS  to S + 1.96o S  95% of the time. These

intervals are called confidence intervals. The end numbers of these

intervals S i 1.96a S are called confidence limits.

We can now proceed considering the statistical significance of a

correlation coefficient. A correlation coefficient rjk computed from

the measurements on variables Z. and Zk  can be considered as an esti-

mate of the true population correlation coefficient, denoted by P

The measurements on Z. and Z, taken as pairs (Zji , 7i), i)l,.... l,

are considered a sample from the population of all possible such pairs.

Since two variables are involved, the population is called bivariate.

We assume that it has a bivariate normal distribution. We are interested

in whether the observed correlation coefficient differs significantly from

an expected result. This obviously depends on the sample size N. The

larger N will be the better will be the estimate of the true population

coefficient by the sample coefficient. Then a statement about the error

or precision of the estimate is called its reliability. In order to find

out about statistical significance of rJk, we have to test two hypotheses,

namely that Pjk is zero or is not zero. To be able to test these hypoth-

es( s, we have to know the sampling distribution of rjk for each case.

For the hypothesis p k = 0, this distribution is symmetric and can be

described by a statistic involving Student's t-dlstribution. If Pjk O

the sampling distribution of rjk is skewed. Then Fisher's Z-transformia-

tion can be employed to transform the skewed distribution into one which is

approximately normal. Let us express now these considerations mathematical-

ly:
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1. Hypothesis 0 jk 0:

t -

has Student's t-distribution with N - 2 degrees of freedom. The hypoth-

esis is accepted at a predetermined level of significance, if, for rk,

t is computed to be less than the t-value read from "student's t-distri-

bution table at the given level of significance and at given de&grees of

freedom.

2. Hypothesis Pjk 0: The distribution of rjk is transformed

by Fisher's Z-transformation. We obtain:

*with mean

SlogL 
.k

stad ntadard deviation

1

Within the context we will be especially interested to find 95%

confidence limits for r jk We proceed to do so by first testing the

hypothesis that for a given correlation coefficient rik tne true

population coefficient pjk is Zero. If the hypothesis is rejected

we are able to compute confidence limits.

We have learned that we can be 95% confident to find the mean

Pz in the interval Z * 1.96oZ . it is

Z 1.96G 1(9)

*.jk I  J 3
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which yields the confidence limits

Z " loge 1t - rjk ± 1.96 for v "

Since

PZ =  2" l g e 1 P

we are able to find confidence limits for Pjk from

I l + P jk j r _ _e1 .9

i- 1 -log lI- rkI __-__

Since 2

x log eX

e1

al itr&3.92
loge l-k loge -jk log

Call

3.92 1

eg

then

+ jk gel rkr.92 AN -

I jk l -k
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and

P ~ - rk
1 jk I lr !

from Equation 5 we obtain

[A(N) - 1] + [A(N) + 1]r~k
jk = (Sa)JA(ii) +- lJ + [A(N) - 1]rjk

from Equation 6 we obtain

0jk fIT it~jy ~~
VWN-) 1] + [A N - k

[1 - A(N)] + (1 + A(N)r jk=J (6a)

[I + A(N)] + 11 - A(N)]rjk

Equations 5a and 6a furnish the confidence limits for the correlation

coefficient rik , whose corresponding population coefficient is pjk.

One is referred to Spiegel (Reference 20) as a reference for this

subsection.

2.6 PEARSON'S PRODUCT-MOMENT CORRELATION COEFFICIENT DERIVED FROM

INCOMPLETE DATA

Let us assume that we have n variables and N individuals, on

which observations are taken. It can quite often happen in practice

that, for some reason, observations for a variable can be taken only

for some of the N individuals. There are several ways to compute a

Pearson product-moment correlation coefficient on the basis of a differ--

ent number of observations for each variable. In the following, three

methods are described. Each time the basic formula (in terms of raw

scores):
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N N N
i; i X i J, XkI

r 
Nk

N

N IN "--

1. Method: SRL-Routine for the Computation of r..k

jkk

Tile correlation coefficient is computed on the basis of simultaneously
existing data points for the two variables X. and Xk.

ji I isiAk

where N* is the number of data points, which exist for X. and X k

simultaneously. The index i* picks from the set {1,... ,i4} those

[~~cii]2 i *~k [Ji*i]

1=1 ji ___ 144 ______l

sifmultesy m en e pcsfo h ehs

numbers, which are accounted for in A*e .

Rewriting the formula above, we obtain

X x.xi~k i X i X ki

form the means
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S i  ji

and

i_ .i1 ,Xki

For the computation of the means only those observations of X. and XkI
are taken into account, where observations exist for X. and X simulta-

I k
neously.

Then the correlation coefficient formula reduces to

N i ki

Nrk k (7)

X,2 ~ i 7--Xk 
, gs

* Wk

A computer program for the above outlined computations can also be

found in Reference 21.

2. Method: Computation of rjk by Making Use of all Available Data.

A consequence of the first method is that, in computing only from
simultaneously existing data points for both variables, valuable informa-

tion is neglected, especially in computing the means. The means are based
on smaller data sets than available and may therefore not as precisely

describe the true population means as would be possible by use of all

available data. Therefore the following method of computation of rk
which takes into account all available data for the computation of means

and standard deviations, is suggested.

Let
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y Xki

where Ni accounts for the data points existing for X, N2 for the

data points of Xk. In both cases summation is done over the set of

existing data points of the variables under consideration.

Ik

The correlation coefficient is a dot product of two standardized variables

divided by the number of points taken into consideration. Since the prod-

uct between two points has only meaning if neither of the points is missing,

the summation will be done over the number of simultaneously existing points

(i=i*) and the sum will be divided by N*, accounting for this number of

points.

rik = N~ciek

J- (Xi - 'j)(Xki - k)
r k

Jk ( Xi - M)2  
(Xki -

k )2

L=* ji 4  xi k

X - r Xk
ii*j ki k 1 ii*ii

14* ~ 23 -2 k p

Let

X.i

and
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k '

as in the case of the first method and obtain

N* 73W -Zj +* 737k

r* - k kj j

k i~ -N2k

i~i* N* I ~k j; j k+ ik <.~

1k 2

** ]'X J 7*)Z V
jk j (8k

irk ki2

If Nl N2, then rl* Nl and N* W2, and Yk =T and Z. 1 X.*
In this case Equations 7 and 8 arm identical.

3.Method: Substitution for Missing Data Points

Another means one can think of as a solution to the problem of comn-

puting r jk from incomplete data is the means of inserting some value

for the missing data points of the variables. The values, which suggest

themselves for substitution, are the statistical means of the varianles.

Since all sums are then taken over H variables the formnula
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N NN X Xi Xxki

iiX jiXki N
r.j

i~~l [ L X jif4 N

can be reduced to

r jk (9)

NT Xkk

where means

(defined as in the 2.method) are substituted for missing data points in

variables X Xk respectively.

The advantage of this last method is, that in the final computation

of the correlation coefficient only one sample size N is used. This can

be of particular importance, if the correlation coefficient is later on

used for statistical considerations, which are based on sample size N.

Remarks:

A. One general remark can be made concerning the three discussed

methods: If the total number of observations is large, some missing data

points will not affect the correlation coefficient, computed by the three

methods, very much. This is based on the fact, that the mean, with large

sample size N, gets nearly stable.

B. It is important to know, what to do when data points are missing,

An example can be given reflecting this importance. A correlation matrix
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was computed by using Equation 7. It happened that for the computation

of one rab there were only a very fe., simultaneous observations on vari-

ables a and b, while for all other computations the nunber of simulta-

nious observations was much larger and almost equal. This fact was not

observed when the correlation matrix was established. At another step of

computation later on, however, it was exhibited how influential the dif-

ferent numbers of observations were: The correlation matrix R was not

Gramian (symmetric and all principal minors greater than or equal to zero)

any more, what it should have been according to the way it was derived as

R ZZT/N. In using Equation 7--as well as Equation 8--the N is differ-

ent, however, for each element of R. Only by using Equation 9 one com-

putes all elements on the basis of the same sample size N. This is an

advantage with respect to preserving Gramian properties. On the other

hand, substitution of means for missing data points may disturb the true

relations of the variables too much, so that a later factor analysis of

the correlation matrix may not reflect the true intercorrelations among

the variables any more. This suggests that the product--moment correlation

coefficient should be computed by either Equation 7 or Equation 8.

Example: As an example for the three considered methods, 130 pairs of

adult male height and weight measurements were selected. Using Pearson's

product--moment correlation formula the correlation coefficient of the two

variables, on the basis of 130 pairs of measurements, is computed to

be 0.484.

To exhibit the three formulae for different degrees of missing data,

three random samples were drawn from the sample of 130 measurements.

a. A random subset was drawn, such that 75% of all available data

'Were used, 50% in complete pairs (height, weight), so that 50% of complete

data pairs were missing.

b. Next, a random subset was drawn, such that 85% of all available

data were used, 70% in completi pairs, so that 30% of complet, data pairs

were missing.

c. In the same manner, a random sample was drawn, such that 95%

of all available data were used, J0% in complete, pairs, so thai 10% of

complete data pairs were missing.
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The results of the computation are listed below.

Missing data pairs

Computation by 50% 30% 10%

Equation 7 0.544 0.508- 0.492
Equation 8 0.557 0.537 0.500
Equation 9 0.383 0.437 0.473

It is seen that the values computed by Equations 7 and 8 converge from

above and the values computed by Equation 9 from below to the "true"

value 0.484.

2.7 MULTIVARIATE CORRELATION--PARTIAL AND MULTIPLE CORRELATION

COEFFICIENTS

Since in later sections we shall use the multiple correlation coef-

ficient we will briefly consider it and also the partial correlation

coefficient, for the sake of completeness, in this subsection.

To help clarify the nature of both coefficients let us consider

the following problem. Assume that the variables (scores on them are

given) stature, intelligence, and quickness of decision contribute to

leadership. We term the factor leadership the dependent variable and

the other three factors independent variables. Then, if we determine the

correlation of the dependent variable with one of the independent varl-

ables, while the influence of the other independent variables is held

constant, we determine what is named the coefficient of partial correla-

tion between the two variables under consideration.

4athematically we can express the above problem in the form of a

regression equation. Let x,, x2 , x3, in deviate form, represent the

independent variables and let x0 represent the dependent variable, which

is estimated from the independent variables. The equation

0 b 01.23 + b0 2.1 3x 2 + b 03.12x3
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is called a regression equation of x0 on x,, x2, x3, the b's being

constants. Tie graph x0  vibr-us x3, for example, is a straight line

with slope b03.12. In this coefficient the indices left of the dot

show the two related variables, while the indices right of the dot show

the variables held constant. With respect to the fact that x varies
0

due partially to the variation in x and due part.ially to the variation

in x2 and x the b-coefficients are called partial regression coef-

ficients.

Generalizing the above, a regression equation of x0 on x,, x2 ,...,xk

can be written as

x0  b 01.23...kxl t bo2.134...kX2 .+ bOk.12...(k-) Xk

The partial regression coefficients can, if necessary, be computed

by the Doolittle Method. Then the partial correlation coefficients are

easily developed from the notion of partial regression coefficients.

When, in 2.2, we developed Pearson's product--moment correlation coeffi-

cient, we learned that the correlation coefficient r. is given by the

slope corrected for the different measures of variability of x. and

Xk: rjk aok/o j . Hence, a partial regression coefficient is the slope

of the line relating the paired measures of a dependent variable and one

independent variable, when the influence of the other independent variables

has been excluded from consideration but when the units of measurement are

not necessarily of equal variability. Corresponding to the development

of Pearson's product--moment correlation coefficient let us now develop

the partial correlation coefficient. Let b0 i.123.)i(k denote the

partial regression coefficient between the dependent variable xO and

the independent variable xi, while the independent variables

x1 , x2 ,..., Xk, excluding xi, are held constant. Let

a0,123... k  and a .12...)i(...k stand for the standard &dviation of

variables x0  and x. when the effects of variables x1, x 2 ,..., Xk,

and xi, x ,...)xi(...,xk have been ruled out. Let rOl.12.)i(k

denote the.partial correlation coefficient Then
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0
r. b I.... )i(...k

rOi.12..")i( ... k 
=  

oi.12 ...)i(.,.k " 0a.12 ... k

and

r b a 0.12...k
ri0.12...)i( ..,k = i0.12.,.)i(.., k  aL.12 ... )i(...k

Since r0i.12...)i( .. k = ri0.12 ...)i(..,k we define the partial

correlation coefficient as:

ra

a01..b a0.12...k= 0 -2... )i( ... k a o.12 ... k bio.12.,..)i(...k ao1.12....... k

= boi.12...)i( ..k biOl 2 )i(k

The sign is the sign computed for b0i.12.)i(k or bio 2 )(.

both being the same.

Referring again to our example in the beginning of this subsection,

another question, we might be interested in, could be: What is the

correlation between leadership and the three independent variables taken

jointly? The coefficient which describes the relationship between the

dependent variable and the independent variables, taken together, is

called the multiple correlation coefficient.

For a certain individual we actually get a score on the dependent

variable, call it Z0i (il,...,N) in standard form. On the other hand

by the regression equation we estimate sucn a score. So the multiple

correlation coefficient, denoted by R0. 12...k, is defined as the correla-

tion between the observed Z0  and the computed TO,

n zo Z~ioi
R0.12... i l 400~ ~ Z ' 0• '

;,ith . *01 .23 ...
8 k I + 12 .k-l'k

. Some computation done on

the aove equations yields

0.12 ...k =/ 01.23 ...krO t 0k.123 .. (k-1)r0k; 0 1

*, Pirson's prodtict--moment correlation coefficients.

64

u.



Section III

THE CORRELATION MATRIX

6.1 INTRODUCTION

Since almost every factor analytic technique begins with a correlation

matrix, properties of correlation matrices and techniques concerned only with

correlation matrices are presented in this section.

Those theorems and definitions from eigenvalue theory which are

particularly applicable to correlation matrices and which will be needed

in factor analyses are presented in subsection 3.2. Subsection 3.3 contains

a definition of a correlation matrix along with those properties which are

important to factor analysis. Subsection 3.4 concludes the section with a

presentation of scaling techniques based on sample size.

3.2 EIGENVALUE-EIGENVECTOR THEORY

In this subsection we will consider those definitions and theorems

from the eigenvalue-problem theory which are necessary for and used in

the development of factor analysis.

Let us first state the eigenvalue problem.

Consider the following algebraic problem: Given a matrix A of order

n. Determine a scalar X and an n-dimensional nonzero vector x, such that

Ax = x

(A, x can be over a complex field, X a complex number).

Definition 3.1: The above problem is defined as the eigenvalue

problem. The eigenvalue problem can be rewritten as

(A - XIn )x 0.

This system of n homogeneouR linear equations in n unknowns has

nontrivial solutions, if and only if the .ternminant of the matrix of

refficients vanishes, i.e.,
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S

d(A-AI) A I 0.
n

an ... a nn-A

Expanding the determinant we obtain a polynomial in X of degree n,

denoted by t(A), so that the requirement is (C) = 0.

Definition 3.2: The equation OM = 0 is called the characteristic

u .uation The n roots of *(X) are named the eigenvalues of the matrix

A. Associated with each such eigenvalue X. is a vector xi, named an

eienvector of A.

Completing the statement of the problem we have the following theorem:

Theovem 3.1: The equation Ax Ax has nontrivial solutions x iff A

is an eigenvalue of A.

Example

Let A be:

The eigenvalue problem is

[( 4 : (: Dig:) 0
The characteristic equation is

l-X(1-A 2 ) =*( 1 _ X) 2  4 0,

with solutions A, = 3 and A2 = -1, the aigenvalues of the problem.
With each of the two cigenvalues is associated an eigenvector. For

A = 3 and A, - the system (A - XI )x 0 each time reduces to a single1 2n n
equation:
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A3

1- 3 
) C::) 

-r 2 n:,
2" x 22 2."

gives x1  -x 2 =0

A2 -1
2

(i 2 ( ::

gives xI + x2  0.

The complete solution set is then described by

k, for x -x 0,
x 1 2

k for x + x =0.

x( ( 1 2

Let us further restrict ourselves to real symmetric matrics A, since

the matrc.swe deal with in factor analysis (the correlation matrices) are of

this kind.

Let us consider the characteristic equation (X), stating th

following:

Theorem 3.2: The coefficient of Xr(r n) in (A) is (-1) r

times the sum of the principal minors of order n-r of A. In particular,

the coefficient of Xn is (-1 )n, the constant tern is dot A.
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In the special case, where r n-i, the coefficient of An-I is

( al + + + a) (_,)n-l a..
ili~ 22nn1

where

n

1~l

is called the trace of A.

It will be useful to know the following two theorems about the roots

of the characteristic equation:

Theorem 3.3: If A is a simple root of *(A) 0, then the rank of

(A- 1) is n-l.

Theorem 3.4: If A is an r-fold root of O(X)=0, then the rank of

(A - TI) is n-r. [A root A is called r-fold, if (%-Y) is contained in

(A) r times. A root which is not an r-fold root is called a simple root.]

Let us next consider some results about the eigenvalues and eigenvectors.

Theorem 3.5: The eigenvalues of a real symmetric matrix are all real.

Theorem 3.6: Eigenvectots associated with the eigenvalues of a real

symmetric matrix have all real components.

Theorem 3.7: Eigenvectors associated with distinct cigenvalues of a

real symmetric matrix A are orthogonal.

Let us now put one more restriction on the matrix A, namely the

restriction that all its elements shall be greater than zero.

Theorem 3.8: Let all elements of the real symmetric matrix A be

positive. Then A has always an eigenvalue A, which is real and positive,

which 's a simple root of the characteristic equation and which is not

exceeded in modulus by any other eigenvalue. The eigenvector corresponding

to A has positive components and is essentially unique (up to scale factors).
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(The theorem is due to Perron (for the proof see Reference 22). It can be

extended to so-called irreducible matrices, which case will be considered,

though, in the context.)

3.3 DEFINITIONS AND PROPERTIES

We begin this subsection with

Definition 3.3: A correlation matrix R is a square matrix where eacn

element r*. is the correlation between the variables Z and Zk.

In the sequel, it is assumed that Pearson's product-mooent correlation

is used.

The most important properties of a correlation matrix from thiu point

of view of factor analysis are included in the statement that a correlation

matrix is Gramian. A Gramian matrix may be defined by

Definition 3.4: Let R be symmetric. Then R is called Gramian,

if it satisfies any one of the following equivalent conditions:

1. R is positive semi-definite.

2. R has all non-negative eigenvalues.
T3. R can be represented by the matrix product AA

4. R has non-negative principal minors.

5. The inner product, (RXIX) z 0, for all X.

Obviously the cor-Aation matrix R is Grarrian since it is obtained

by the product of score matrics,

Z " _ t

Where N is the number of observations.

J.4 SCALINS TECHNIQUES BASED ON SAMPLE SIZE

Two corlation .'tr cJ.,Itn identicl lemnits ."i, of curse,

yield id,2ntical factor analyses. If it were the case tnt identical

iem7nt5 had diffurunt significance lvels, these differences in

r.Aiali Lity would not apuar in the factors. Thus in order 'or a

fc .v:' Lyos to f1,;% t the signif jcau. of th:- cCrr_ Lt ion coe ficinr:t
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the correlation coefficients should be scaled in accordance with their

significance.

As used in :-ection 2.5, the variable

Z I 1 + , Fisher's Z-transformation, (1)
r 2 1- r

is approximately normally distributed with

S-

(2)

an unbiased estimate of the standard deviation where N is the size of

the random sample used in computing the correlation coefficient, r.

Then, for 95% of the samples, the variable

Z =Z 1.96 (3)P r 1,

will be less than the true population variable. Thus, Equation 3 may be

used to obtain a scaled correlation coefficient p given the observed

correlation coefficient r. p will have on the average one chance out of

twenty of exceeding the true population correlation coefficient. The

probability may be adjusted by changing the numerator of the second term

in Equation 3.

Equation 1 may be used to solve for p as a function of r by

substitution into Equation 3. We obtain (as derived in Section'2.5):

(1-A(N)) + [l+A(N)Jr (4)
-l+A(N)] + ([-A(N)]r

Equation 4 is the formula to be used to scale observed correlation

coefficients, r.

Since each element of a correlation matrix R = (r ij) is a correlation

coefficient, Equation 4 may be written as

[1-A(N)] + [ItA(N)]ri
Cij [lI+A(N)] +Cl-A(N)]rij

for >plication to correlation matrices with observod correlations, r.
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Figure 1 shows curves relating r and p for various sample sizes.

A chart to be used in the same manner as the chart presented here appears

in Ezekial and Fox, Methods of Correlation and Regression Analysis

(Reference 23, p. 294). However the shape of the curves in the chart

differs from those presented here, and the derivation of the chart is

not given.
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Section IV

TECHNIQUES OF FACTOR ANALYSIS

4.1 INTRODUCTION

After the correlation matrix, which furnishes the basic material

for a factor analysis, has been investigated, one can proceed to

consider techniques of factor analysis. This is done by briefly

reviewing the model in 4.2 and by then discussing, in 4.3, the prop-

erties of the two most important and popular factor analysis methods,

the centroid and the principal-factors methods. Starting with section

4.4 specific problems of factoring a correlation matrix are discussed;

4.4 presents a new technique to estimate communalities; 4.5 compares

most of the important completeness criteria; 4.6 called "Eigenvalues

and Their Bounds" suggests a way to an answer on the important question

* of the right sample size. The section ends with a brief discussion of

factor scores in 4.7.

4.2 REVIEW OF THE MODEL

In this subsection the model will be presented in greater detail

stating basic definitions and equations.

We begin with the two basic theorems of factor analysis:

Theorem 4.1: For every correlation matrix R there exists a

corresponding factor matrix F such that

FFT R.

Furthermore,

Theorem 4.2: There exists an infinite number of factor matrices

F which reproduce any given correlation matrix R.

The problem, then, is not only to find an F, but to find the F

that satisfies a given set of initial conditions which are, more often

than not, subjective decisions and boundary criteria. The solution of

the factor analysis problem consists of two basic steps:
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i. Factoring problem - factor a given R into a factor matrix

with an arbitrary reference frame.

2. Rotational problem - rotate the arbitrary reference frame

into a "preferred" or "simplifying" position.

Factorial methods were developed primarily for the purpose of

investigating and identifying the principal dimension or categories of

mentality and thus are plagued by the non-mathematical justifications

which are used to evaluate them. A technique infallible to a psychologist

can be worthless to the engineer grading castings or a company rating its

employees. Consequently, some of the basic definitions and techniques

are given next using mathematical notation while comments on reliability

and practicality for application result from longhand factor interpretation.

From References 2 and 24 come necessary basic definitions and equations.

It is the purpose of factor analysis to represent a variable X in ters

of several underlying factors, or, as Harman (Reference 2) states,

"hypothetical constructs". There are various kinds of factors:

Common factors - involved in more than one variable

a. General factor - present in all variables

b. Group factor - present in more than one but not in all variables

Unique factors - involved in a single variable.
We now use the notation Fl, F2 ,..., F for, say, m common Eactors and

U1, U2,..., Un for, say, n unique factors to express linearly any variable

in terms of the factors as follows:

X = a F + a F + + a. F + a U.j jllI j2 2 jm m i J

For a particular individual or observation we have

Xji ajlli + aj2 F2i + + a amFi + ajUji, i I,..., N.

The coefficients a. (j 1,..., n , p=l,..., m) are the elements of the

factor matrix and are referred to as the factor loadings composing the

factor matrix

F (a. JpI
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The total variance of X. can be divided into two parts, namely,3
that part which it shares with other variables and that part which is

unique. For example.

2 1 (aj1 2 IF2 a+ +a 2  1 F2 . 2 U2.
N j LFli jm mi ] ji

+ 2alaj2 Fl 2i + + 2ajl'aj Fmi Uji

where all summation limits are i = I, 2, ... , N

If the variables are in standard form and the factors are uncorrelated,

a 2 a 2 a2 21o a + "*" +a. + a.
] jl j

The terms on the right represent portions of the variance ascribable to the
2.factors ( , a 1 is the contribution of F to the unit variance of Z.).

The total contribution of a factor F to the variances of all variables is

defined to be

V n
" j ]

Uniqueness can be further broken down into specific, S., and error,

Ei , factors. Since error and specific factors are uncorrelated,

2 b2 2a.b. c.

where b. and c. are the respective factor loadings of S. and E. Therefore

the total variance can be expressed

2 2 22 21 h. + a = h. + b. + c..

Communalities, Then, are defined as the common-factor variances of the

variables.
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A set of equations givin& any set of varibles {Z.) in terms of the

m common factors and one unique factor is sometimes called a factor pattern.

Such a pattern can be presented in tabular form, e.g.

a a . . . a a
S 11 12 Im 1

a a . . . a a
21 22 2m 2

a a a a
n2  n

The number of common factors included in such a description of a

variable is the variable complexity. A factor matrix which represents

the total unit variance of each variable is the complete factor matrix.

A factor-matrix which represents only the common factor variance of each

variable is the reduced factor matrix. A correlation matrix with ones in

tho diAgonal elements is referred to as the complete correlation matrix.

A row of the factor matrix in relation to an origin and reference

frame in- (m + N) - space (factor space) will be called a variable vector.

The re-orientation of this vector within the space constitutes the rotation

problem. Techniques for factor rotation are discussed in Section V.

4.3 TYPES OF FACTOR SOLUTIONS

Ideally a factor solution displaying a minimum complexity (i.e., a

common factor space of one dimension or two dimensions) is the goal of

the factor analyst. Such a factor pattern might look like
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a a

Ii 1

a a
21 2

a a

nI n

The uni-factor and two-factor solutions are examples of such theoretical

entities. However, the factor analyst rarely will see data which can be

accounted for so simply. Data which are not well behaved, requiring a

complex network of correlated and uncorrelated common factors as well

as a set of inconsistent unique factors, is the rule rather than the

exception. Consequently, the factor analyst generally must first decide

what he is looking for and then choose a technique which best suits his

needs. A rather short list of factoring methods is at his disposal.

As a matter of fact there are but two popular methods practiced, differen-

tiated significantly by the number of calculations involved. Thus the

centroid method for years has set the standard in hand computation tech-

niques while the principal axes method has proved itself workable using

high speed digital computers. Both methods can lead to multiple-factor

solutions. A short discussion on each of these methods follows.

Centroid Method - The centroid method of factoring exiiibits what

Thurstone calls a "computational compromise" since the resulting factor

loadings are not unique for a given R. Let us assume, then, that the

original score matrix S consists of n vectors contained in m-space where

m is the number of common factors, As is well known, the correlations

between any two of the n variables are just the scalar products between

them. To obtain a vector whose m components give the c~ntroid of the

points describing the set of common factors, we simply average the ele-

ments in the factor matrix approximately, or
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where k =1, 2, ... n. We require the frame of reference to have an

axis passing through the centroid thus reducing the centroid vector to

n 0 ' '

With a minimum of transposition utilizing the new axis, a general

formula can ea.gily be derived which gives the elements of the first factor

loadings:

a. ,j n

n n n
Si k rjk and T I I l rjk

-k~ j=1 k=1

The residual matrix is then calculated

[rj = [rjk-- ajak,)

and the next factor loadings are. calculated using

c.S.
a. = - , j = 1, .2,...,n ,
)2 -

where n = 11, depending on necessary matrix reflections.

1, moval of the remaining factors follows the same pattern until the

process is ended. Interestingly enough, no dependable tecnniquc exists to

stop this sequence. However, this problem will be considered in subsection

4. 5

Principal Axes Method - The principal axes method of factoring derives

an ellipsoid representation where the axes of the eliipsoids correspond

to the factors. The selection of the factors occurs such that tncir rcs[ e-

tive contributions to the conmunality decreases. In other wordlz, the

contribution of factor onu to the total communality is maximun,
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Therefore, V 2 + a21  + ... + a2 is chosen as maximum under theni

conditions

rk a jpakp ,j,k = 1,2,...., n.

Applying differential calculus to these conditions, the characteristic

equation of the correlation matrix R is derived

JR XI 0.

Solutions of the characteristic equation are, of course, the eigen-

values of the matrix which have the following well known property,

generally expressed:

Xp j -

Tha set of eigenvoctors {a.p} corresponding to X then are used to obtain

the factor loadings of factor :

~2 +a + *.i~a2, j=l,..., n.
]PP

ip 2 + a2. + + a2

iP 2P np

Of course, ,communalities must be estimated in this process and can affect

the solution for a small number of variables. Since a decreasing amount

of communality is extracted with each factor, an C can be chosen such

that I[2 - h2 1_< completes the factoring where jj2 is the derived

approximated communality.
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4 .4 COMMUNALITY

In most standard factor analysis packages available in computation

centers all over the country, there exist at least three alternatives

in the estimation of communalities: insertion of ones in the diagonal

of R; arbitary choice of h? as the largest r in either the
.th th 3ij
I row or the 3 column (this is the technique employed by Thurstone

(Reference 25) in deriving human factors); or by using squared multiple

correlations (see Section 2.7) as communalities. Hamian (Reference 2, p.86)

states the problem as follows:

"Literally dozens of methods for estimating communalities
have been proposed but none of them has been shown to be
superior to any of the others on the basis of closer approxi-
mation to the "true" values. As a matter of fact none of
the methods has been demonstrated to lead to minimal rank
of the correlation matrix. The choice among the various
methods of approximation is generally made on the basis of
available computational facilities and the disposition of
the investigator to employ that method which intuitively
seems best to approach the concept of communality."

In this subsection a new technique to obtain communalities is pre-

sented. Let us first introduce in more detail the basic requirements

for estimation of communalities.
2 ofthe th vral

For uncorrelated factors the communality, hi, of the j variable

is given by the sum of the squares of the common factor coefficients, viz.,

h? - a2 + a +. + a23 1 J2 jm"

The elaboration of this statement has yielded further defining

characteristics:

1. The communality may be defined as the squared multiple corre-

lation of the given observed variable on the common factors.

2. The squared multiple correlation of the given variable on the

remaining variables must be the lower bound to the communality

(References 26 and 27).

3. The communality is the upper limit of this squared multiple

correlation as the number of variables approaches infinity (Reference 27).

4. Since the communality is a variance, its upper limit is one.
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5. Unique communalities can be obtained only when the rank of the

matrix satisfies the following condition (References 28 and 25).

2n + 1 - 8n + 1m ~ .M 5 2

These requirements yield properties which have been stated as follows

(Reference 29):

1. The obtained communalities must be within the following boundaries:

0 R? C h4 1.J )

2. The factor loading matrix should reproduce the reduced correlation

matrix exactly.

3. Minimum rank should be attained.

4. The reduced correlation matrix should be Gramian.

When the principal factor method is used, properties 2 and 4 can be shown

to be equivalent.

Guttman (Reference 30) has shown that diagonal values which reduce

rank may not satisfy other requirements for communalities. The Heywood

case (Reference 31) is the classic example. Moreover, the statement often

made that the rank of any symmetric matrix with even random elements can

always be reduced to a certain degree by choosing diagonal values has been

shown to be false (Reference 29). The proof is based on the impossibility

of assuring real solutions to systems of nonlinear equations with real

coefficients. From intuitive considerations of experiment design, it is

to be expected that the number of factors causing variance among the

variables is even greater than the number of variables. Other minor factors

cause variance in the measure of variables intended to measure major factors.

Thus the attempt to find diagonal values which reduce rank must end in

only some sort of approximation. But rank reduction is basic to a par-

simonious explanation of the variance of the variables, and different
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approaches may be taken to the problem of approximating rank reduction.
For example, one of the few communality estimates based on rationale, the

method of triads, uses average diagonal values which seek to force deter-

minants of submatrices approximately to zero. On the other hand, the

refactoring method simply postulates the number of factors. Many so-
called "estimates" of communality do not even consider rank reduction.

Then from the foregoing statements we may distill a refined definition

of the communality problem:

Find diagonal values hj such that 0 g R2 g h2 < 1,
and such that the correlation matrix with these diagonal

values is Gramian. Moreover with these diagonal values, a

higher percentage of common factor variance is explained

with fewer factors than with any other diagonal values.

A method for computing diagonal values which attempts to satisfy this

definition is described in the sequel.

A. The Method

If a symmetric matrix A is bordered by the oolumn U, the row O*,
and the scalar a, then the eigenvalues A of

(A U1

satisfy the equation,

n (U IXi)
2

I A - ,i (2)
iul

where Xi is the unit eigenvector corresponding to the eigenvalue A.

of the n x n matrix A (Reference 32, P. 27).

Since the rank of a matrix is the order of the matrix is the order
of the matrix minus the number of zero eigenvalues, to reduce the rank

we must have zero eigenvalues. Then, in view of Equation 2, a necessary
condition for zero eigenvalues is that

(U I X.)2
a (3)

8I2
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When Xl 0, it can be shown that (U X) 0 0, thus

lim (U I X) 2  0
X.4O X.

1 1

Thus the terms in Equation 3 corresponding to zero eigenvalues of A

may be elided.

The foregoing scheme will be used to find each diagonal element.

Before presenting the algorithm formally, a theorem on transforming

eigenvalues is needed. Two diagonal elements of R, Rkk amd Rn)

may be interchanged by the transformation

IkRIk

kk thk

where Ik  is the identity matrix with the k
t h  and nth rows (or columns)

interchanged. The use to be made of this transformation rests on the

Theorem 4.2: R and I RI have the same eigenvalues.
k k

Proof: R may be diagonalized by an orthogonal transformation P by

R P*AP

where A is the diagonal matrix of eigenvalues of R.

Now we may consider R k IkRIk. Using the facts that I k k  I and

I* I we havek k

Rk  IkRIk  = IkP*APIk

= (PIk)*A(PIk)

= P4AP I

Thus Rk is diagonalizcd by the orthogonal matrix PI with the same

diagonal eigenvalue matrix A. Moreover, the eigenvectors are also per-

muted since

RX AX

IkA(IkIk)X = AIkX
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(I kRIk)0Ik X) X (I kX),

and R k(IkX) )X(IkX)

Then we may consider approaching the communality problem by

choosing Rk as follows:

Rkk (UkXi)2  k = 1, 2, n...
i~l I

where NX i  )iXi

R N = I RI

k Rkk

and (Xi Xi ) .

Both unities and squared multiple correlations have been used as

initial diagonal values. After the diagonal values have been found for

all k, the process is repeated until all diagonal values are stable.

Diagonal values are used (i.e., replace old values) as soon as they are

calculated. In practice, convergence is enhanced by omitting'terms in

Equation 3 for which A < c = .05. The final result of the method is
1

a clustering of eigenvalues about zero. Thus there are small negative

eigenvalues. For the sake of interpretation Gramian properties ace not

necessary. However when data reduction is the object of the factor

analysis, Gramian properties may be restored by adding the absolute

value of the negative eigenvalue with the largest absolute valxe to each

element on the diagonal. In proof we write

R P*AP

where A is the diagonal matrix of eigenvalues of R.
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Let A be the scalar matrix X I;n n

then R - A P*AP - An n

But since P*P I and commutes with A ,

R- A = P*A? - P*AP

= P*(A - An)P

Thus the elements of the diagonal matrix A - A are the eigenvalues of
n

R - A . But the elements of A - An  are all pcsitive or zero. Therefore

R - A is Gramian. However, this method for forcing Gramian properties
n

may lead to communalities larger than 1.

To better understand how the above bordering scheme may drive the

eig envalues of R to zero and thus reduce the-rank, let us plot on the

same graph each side of Equation 2 as a function of X (see Figure 2).

The solid graph is the right hand side, and the dotted graph is the

left hand side of Equation 2. The eigenvalues A of the bordered matrix

occur at the intersections of the sets of curves. Notice that the

eigenvalue of the smaller matrix always lies between two eigenvalues

of the larger matrix. Each of the dotted lines corresponds to a

different .choice of a. The uppermost dotted line corresponds to the

a chosen according to Equation 3, in which case we have an eigenvalue
of zero. The observed effect of reapplying the algorithm after trans-

formation of the matrix (i.e., finding a new diagonal element) is to

shift positive eigenvalues to the left (closer to zero) and negative

eigenvalues to the right (closer to zero). A formal deductive proof

of convergence has not yet been found; however the success of the

algorithm in solving the communality problem is exhibited in the following

examples.
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B. Examples
Example 1. Six Hypotheticil Variables: Hamnian (Reference 2, p. 91)

used these variables to illustrate communality estimates by various

methods. The results of applying the method described in this paper

are shown by plotting the eigenvalues of the 6 x 6 correlation matrix

with calculated diagonal values (Figure 3). The eigenvalues obtained

using unities and squared multiple correlation are also plotted in

Figure 3. In this example and in every other application of the

method described here, the following inequalities have held:

2 2X ) R <X i(d )<A i(1) 1 =n,..

R?. < d?< i in

* where d. are the calculated diagonal elements and R. are squared

multiple correlations. The calculated diagonal elements are "true"

communalities in the sense that the correlation matrix was constructed

to attain rank two with these values. No communality estimate presented

by Harnan found these values.

Example 2. Thirteen Psychological Variables: The data for this example

was also taken from Harman (Reference 2, p. 137). However these variables

are experimental rather than hypothetical. The plot of the three sets of

eigenvalues are shown in Figure 4. These variables were well chosen to

illustrate three major factors as clearly seen in Figure 4. However, it

would only be accidentally possible to find diagonal values which would

yield ten zero eigenvalues (i.e., a rank three correlation matrix).

Example 3. 16 Hypothetical Variables: A 16 x 16 matrix was constructed

by squaring a 16 x 4 matrix of random elements with normalized columns.

Thus the 16 x 16 matrix was of rank 4 when the constructed diagonal

elements were retained. The proposed method found these "true communali-

ties" given the constructed matrix with unities on the diagonal. The

plots of eigenvalues are shown in Figure 5.
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C. Conclusions

The proposed method found diagonal elements which satisfied the

refined definition of communality in all cases where an exact reduced

rank was known and possible. In the other cases, the method found diagonal

elements which satisfied the definition better (from the eigenvalue point

of view) than did either squared multiple correlations or unities.

The method converged to "true communality" when either equared multi-

ple correlations or unities were placed on the diagonal initially. However,

the process converged faster with squared multiple correlations as initial

values.

From a study of eigenvalue plots in several cases, it would appear

that squared multiple correlation is a very good estimate of communality

when there are only a few well-defined major factors. That is, either

estimates of communalities are calculated by the method presented here

using unities or squared multiple correlations as initial values for the

method, or squared multiple correlations are themselves used as estimates

of communalities. When factor analysis is used for the purpose of inter-

pretation, the factor loadings are used to indicate which variables to

associate with which factors. And the sets of associations are the same

whether the factor loadings are obtained from a final reduced correlation

matrix with communalities on the diagonal or squared multiple correlations

on the diagonal. Thus squared multiple correlations are sufficiently close

to true communalities to distinguish major factors when they exist.

4.5 COMPLETENESS OF FACTORIZATION

In factoring a correlation matrix no unique test as an answer to the

question "when to stop factoring?" has yet been developed. At present

there exist several methods which are applied with more or less success.

A few comparative or survey studies of some of these methods are

available: Mosier (Reference 33) studies six different tests for

completeness of factorization, applying them to one correlation matrix.

Cattell (Reference 24) lists and evaluates eleven tests. Burt

(Reference 34) summarizes, under the topic of "tests of significance

in factor analysis" many of the existing methods. Fruchter

(Reference 35) comparatively evaluates various tests, applying them

to one or more concrete cases. In the most rece:nt survey paper Sokal

(Reference 36) evaluates comparatively five tests applying them to
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Thurstone's box measurements, an artificial correlation matrix, a

psychological matrix and a biological matrix, using centroid factor

extraction. The present investigation compiles methods, which are used

by factor analysts, in the form of a quick reference, listed in a

systematic way.

Before leaving this introductory part let us make two remarks:

(a) Cattell (Reference 24) and also Burt (Reference 34) and

Fruchter (Reference 35) suggest, that if one wants to rotate, it

pays off to extract one or two more factors than necessary after

application of any of the completeness tests, since one obtains more

accurate results. Several workers also suggest applying more than one

criterion and deciding upon the number of factors on the basis of the

results of all the criteria.

(b) Obviously a solution to the communality problem together with

the simultaneous knowledge of the rank will also resolve the completeness

problem. The technique described in 4.4 presents such a solution. Since

it is a converging process the adequacy of the factor solution of the

original correlation matrix may then be shown by any of the following

tests. It is suggested to then use one of the statistical tests, in order

not to bring an empirically approximate view into the mathematically sound

picture of the applied method.

For reference let us set up the following list of methods to test

completeness of factorization:

A. Empirical completeness tests

1. Percentage tests

2. Tucker's test

3. Cattell's scree-test

4. Kaiser's test

B. Significance tests for completeness

1. Tests for joint significance of residuals

a. McNemar's test

b. Saunder's test

2. Tests for individual significance of residuals

a. Test by means of standard error formula for

the final residuals

b. Sokal's test
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3. Burt's chi-squared test

4~. Lawley's chi-squared test

C. Miscellaneous tests for completeness

1. Index of completeness of factorization

2. Listing of other completeness tests

A. Empirical Completeness Tests

1. Percentage Tests

A practical an(! commonly used test for completeness of factorization

considers percentages of total communality, accounted for by the factors.

The tests can be conducted under different aspects:

(1) Determine in advance to analyze up to, say, 50% of the total

variance, or a suitable proportion of the total reliability (leaving a

proportion for the specificity).

(2) Determine in advance that a factor which accounts for less

than, say, 5% of the total variance will not have any practical signifi-

cance in the sense of being identifiable.

(3) Extract factors and if, after, say, 90% of the total communality
or total variance have been accounted for, a factor accounts for only

2% of these totals, do not retain it in the set of factors.

The percentage tests are especially handy for the principal factor

solution since the contribution of the factors to the total variance or

total conmunality decreases with each succeedingly extracted factor.
One could then stop factoring after one reaches a factor which accounts

for, say, 5% of these totals. One knows that the next factor which could

be extracted, would contribute less than 5% to the totals.

There is one more simplifying aspect of the principal factor solution.

The total contribution

n

j=l 3P

of factor Fp to the total variance or total communality, which is equal

to the trace of the determinant of the correlation matrix, is equal to

the X -eigenvalue. The effect of each factor contribution to these totals
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can therefore be computed easily as eigenvalue-percentage of the trace.

2. Tucker's Test

Denote by I Ik the sum of absolute residuals of the n x n

correlation matrix after k factors have been extracted.

Tucker's test (Reference 37):

If

then the (k+l)-factor is considered to be insignificant.

Tucker's criterion after a modification by Blakey (Reference 38):

If

IIPk+ll I n-l

then the (k+l)-factor is considered to be insignificant.

Remarks:

(a) I IpkI and I IPk+l' include the communality residuals.

Sokal (Reference 36) states, that it is desirable to use re-estimated

communalities in place of residual ones in the denominator; but since

the difference between residual and re-estimated diagonal values is

usually slight, it is not of great importance what values are used in

the main diagonal.

(b) Cattell (Reference 24) considers Tucker's test as one of

the most reliable and practical ones of the really quick tests of

completeness, though it sometimes can give strange results, since
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the value of the ratio can decrease or increase after extraction

of factors instead of increasing steadily.,

Sokal, using the second form of the criterion in a comparative

study of five tests for completeness of factorization, considers the

test as not very suitable as a strong and fast criterion. Empirical

investigations by McNemar (Reference 39) and thocrcticil -nvestig-

ations by Burt (Reference 34) support his standpoint. Burt criticized

Tucker's test as making no allowance for the number of variables and

the number of factors extracted and as making no explicit reference

to the size of the sample. He considers the test as marking too

many factors as insignificant.

Tucker's criterion has actually been employed by more factorists

than any other criterion.

3. Cattell's Scree-test (for a principal factor solution)

Starting with the largest, each eigenvalue is plotted in an x-y-

coordinate system, its number versus its length. Then the curve
through these points is examined. If the number of factors, m,

is less than the number of variables, n, n-m eigenvalues of the

correlation matrix will be zero or at least close to zero, lying

on a straight line almost parallel to the x-axis. The test consists

in determining that point, where the curve breaks off the straight

line. The number of eigenvalues determining the left part of the

curve yields the number m of factors.

4. Kaiser's Test (Reference 40)
Upon extensive studies of correlation matrices with unities in

the main diagonal Kaiser suggests as a practical basis for determining

the number of common factors the number equal to the number of

eigenvalues greater than one. Kaiser found that this number amounts

to about a sixth or a third of the total number of variables.

B. Significance Tests for Completeness

1. Tests for Joint Significance of Residuals

,1. Mcbemar's test
Let ak denote the observed standard deviation of the

residuals (disregarding diagonal values) after extraction of k
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factors. Let Mh2 denote the mean of the communalities (computed

from k factors). Then 1 - Mh2 is the average uniqueness. If

1k 1eres ____-_ Mh

l h2 -V/j

N being the number of observations,all significant factors have

been extracted.

Remarks:

(a) McNemar's criterion is an attempt to test the significance

of the residuals after k factors have been extracted from the correla-

tion matrix. He used the centroid solution for his derivations. In the

beginning years of factor analysis an attempt to do so was made by com-

paring the standard deviation of the residual correlations with the

standard error of the original correlations. This device, though, is

not adequate since residual correlations are analogous to partial

correlations (the factors being held constant) and should for this

purpose be divided by the geometric mean of the uniquenesses of the

two variables under consideration. To reach his goal to test the
significance of the residuals after k factors have been removed

from the correlation matrix, McNemar approximates the standard devia-

tion of the residuals or partial correlations by

a k

1 - Mh2

Cattell (Reference 24) reasons on the basis of experience that

McNemar's test tends to stop factorization too early. Sokal (Reference 36)

concludes from his studies that McNemar's test yields interpretable

results except for problems with very large sample size N and low

uniquenesses (that is, high communalities), in these cases indicating

more than the true number of factors. In this respect it is worth

noting that the test mainly takes into account the sample size N

(b) Burt (Reference 34) suggests along the same line a procedure,

which, as he says, is more satisfactory by not using residuals but
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converted residuals (see Sokal's test) 
squaring them and summing them

up. Then, if N is large, this sum will be approximately distributed

as chi-squared. So, he suggests to determine significance of any

particular set of residuals by referring to the X2-table with

in(n - I) - kn + 1 k(k 1 1) degrees of freedom.
2 2

b. Saunder's test

Let Pk denote the sum of the residuals of 
the n x n correlation

matrix after k factors have been extracted. Let N be the sample

size and denote by
a k 2i=i i3.

the sum of all n x k factor loadings, the loadings taken fr n the

unrotated matrix. The test can take on two forms: If

* ~ H (~ -j~la2 a) 2

after the kth factor has been computed, then the factor 
extraction is

complete. If the reliability coefficients of the 
variables are denoted

by rjj then the test can be stated as: If

2Kn rjJ

< N

after the kth  factor has been computed, then the factor 
extraction

is complete.

Remarks:

(a) It is advisable not to include the diagonal residuals in

P2  unless one is sure of exceptionally good communality estimates.

If the communality residuals are excluded from the summation one has

to multiply p2 by -L to bring it to that equivalent with a

k n-l
whole matrix.
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(b) Saunder's (Reference 41) claims his formula is an Improve-

ment over McNemar's test since it takes into account the sample size,

the number of variables, the reliabilities and especially the number

of factors.

(c) Sokal (Reference 36) applying Saunder's test to his four

matrices obtains results similar to those obtained by McNemar's

criterion. He again finds the apparent influences of large sample sizes

or high communalities on the results.

2. Tests for Individual Significance of Residuals.

a, Test by means of standard error formula for the final residuals

Two approximate standard error formulas can be employed to decide

upon the significance or insignificance of any residual after any

number of factors has been extracted from the original correlation

matrix.

(1) Theoretically it should be: R = AA'. Extracting common
factors, R will only be reproduced by AA' approximately. How
good this approximation is, or in other words, how complete factorization

is, can be judged on the basis of the residual matrix R, R R AA'.
Each element of F, the final residual correlations, should be approxi-

mately zero in size; since, when all common factors have been extracted,

no further correlation should exist between the variables. Let us assume,

therefore, that the distribution of the residuals is similar to that of
a zero-correlation in a sample of equal size. Then denote by OF the

standard deviation of the series of residuals and by ar- 0 the standard
error of a zero-correlation. Under the above assumptions it would then

be necessary as a test for completeness to determine if

a- _ a 1
r - rO

or, since N is usually large, if

I
a- ( -
r-
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From the application of this test-depending on the sample size alone,

which is rather crude-one may conclude If

to an appreciable extent: further linkages between variables may

exist; further factorization may be necessary. If

1
r N

to an appreciable extent: unjustified linkages between variables were

factorized.

The above test can be found in Holzinger and Harman (Reference 42)

and in Harman (Reference 2). Applications can also be found in these

texts. Similar formulae have been proposed by Kelley (Reference 43)

and Thurstone (Reference 44).

(2) Holzinger and Harman (Reference 42) have derived a standard

error formula for a residual after any number of factors has been

extracted from the correlation matrix.

Denote by r.. the observed correlation between variable i

and j , by r.. the residual after extraction of m+l factors,

by a2 and o the standard errors of factor loadings, then
a is aaj

ris0 ai +ai

This formula, however, cannot be applied to a residual obtained from

any solution since the standard errors a2 and u2 are only knowna a
for the two-factor and bi-factor solutions s

In approximating the above formula, so that it does not explicitly

contain the standard errors of the loadings, the assumption is made
that all observed correlations can be well enough described by their

average, computed by

1 (rj ;i,j =1...n, i j)
2 n) iJi 'ii
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And if ps denotes the average residual correlation used for computing

loadings of the factor Fs, the approximate formula after extraction

of m+l factors is of the form:

2 = (1 -_ )2 ( 5 + P + 4 2 ) + 1 m 5 2 3 j

These standard errors are tabulated in References 42 and 2. Applications

can also be found there.

It should be noted, that the necessary approximations to arrive at

above formula, make the a - -value usually smaller, so, in order to take
r

this fact into account, a residual which is twice its standard error can

still be considered insignificantly different from zero.

b. Sokal's Test

In the following test each single residual is tested for insigni-

ficance. Denote by Pi.k the residual correlation between variables

i and j after k factors have been extracted. Let ulk denote

the uniqueness of variable i after extraction of k factors:

u1 ="a ~k i1 12 . .. aik"

Convert the residuals to quantities analogous to partial correlations

(factors through k kept constant) by dividing them through the geometric

mean of the uniquenesses of the variables under consideration. Name the

converted residuals rij.12 .. k . So

r i.12...k = ij.k Pij.k

Iu Uik Ujk

Assume that the rij.12...k have the same sampling distribution as
ordinary partial correlation coefficients. Under this assumption test

each converted residual against the minimum significant partial correlation,

denoted by r , obtained from table IV, Fisher and Yates (Reference 45):
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ij.12...k " m.s

at a presumed level of Aignificance with N - (k+l) degrees of freedom,
then rj.12 .. k is insignificant.

Remarks

(a) The rather laborious work to conduct the test on each residual

can be simplified by excluding certain residuals from the test. This

is done by the following procedure: for a presumed significanca level,

r2  can be determined as well as the lowest two uniquenesses,m.s
denoted by u? and u2  Then from

m ik m 3k.

r2  Ij.k
M = Uz  U

m ik m jk

Pij.k can be determined:

Pij P2  ~U? p2j.k m.s m ik m jk = m.s

and all values

Pij.k <Pm.s

are certainly unsignificant. That means, for the test only values

Pij.k Pm.s

have to be considered.

(b) Sokal (Reference 36) discusses this completeness test in his
comparative study, mentioning also some computing simplifications. He

obtains his results by judging the elements of the residual matrix by the
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a_:ve described significance test and by the "importance" test, that

is* -by counting the number of partial correlations larger than an

arbitrary 0.05 (disregarding the sign), that remain in the matrix

after- k factors have been extracted, naming those correlations

important. On the basis of his study he recommends these procedures

to test for completeness because of the statistical basis of the

significance test and the apparent consistent results.

(c) In one of his early tests Burt (Reference 46) started from

the same considerations as Sokal, defining rij.12 ..k and testing

it against the standard error of a zero partial correlation, _
[F'

then the test is given by

r ij.k < 1
ij12""k uik ujk - T

3. -Durt's Chi-squared Test with Z-transfor'mation
Theoretically, it is R = AA'. Test the significance of the

differences between the elements of R and of AA' after k factors

have been extracted. Let Z denote the elements of R transformed

by Fisher's Z- transformation and let Z denote the elements of AA',

also transformed by Fisher's Z. Sum (Z-2) 2 over the upper or lower

triangles (without diagonals) of the respective matrices. If N is the

sample size, n the number of variables the test of significance is

expressed by: If

X2 = (N - 3) 1 (Z- 2

with in (n - I) - kn + jk (k - 1) degrees of freedom is insignificant

at a presumed level of significance, the factor extraction is assumed

to be completed.

Remarks:

(a) Fisher's Z-transformation, Z=tanh r = ]log r , is applied2 e 1-r i ple
to the elements of R amd AA' to ebt:yin thcir nor--l distribution

(b) Burt recomnends this test in his 1952 paper (Reference 3,'J) as

the"most useful available when current factorial procedures are employed".
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Sokal (Refetence 36) in his comparative study obtains 
some correct

results and points out the fact that small correlation 
matrices may

not provide enough degrees of freedom.

4. Lawley's Chi-squared Test

In the following we will consider a statistical test 
for the

number of common factors. This test should be used, though, for

large samples only and with ones in the main diagonal 
of the corre-

lation matrix.

Let N denote the sample size, JR1 the determinant of the

matrix of observed correlations and IPI the determinant of the

maximum likelihood estimator (P +AA a 2 where factor loadings

are determined by the maximum likelihood method ) of the population

correlation matrix. Let the variables have a multivariate normal

distribution. Then

chi-square X2  N log (4)

*with

S 1 [(n k) 2 -n -k]
2

degrees of freedom is used to test the hypothesis that k common

factors adequately explain the correlations at an assumed level of

significance.

Lawley (Reference 42), who derived the above formula, simplified

it, by approximation to the following X
2 formula to be examined:

2n r ..
= N .(5) (corrected

i<j=l 3 residuals)

where r.. denote the residuals obtained by1)

r.. r.. -r
) 1i ij

with r!. being the elements of P , that is the (maximum lii;o,

estimated) reproduced correlations.
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Remarks

(a) Harman (Peference 2) states that, usually, that is by other

than statistical means, one underestimates the number of'statistically

significant factors, compared w-th the number of factors one obtains

by application of the x2test.

(b) As Harman points out, it is reasonable to apply the test

also to problems where the maximum likelihood method is not employed

to estimate ; if one draws only a conclusion in the case where the

X3value is found to be insignificant. In case the x~value is signifi-
cant, though, no conclusion can be made since it is possible that a

maximum likelihood factorization gives better results.

(c) Rippe (Reference 48) arrives at a formula identical with the

.likelihoo4,ratio (equation 4), his development not being specifically

dependent on maximum likelihood estimates of factor loadings.

(d) An experimental study of the test was furnished by Henrysson

(Reference 49).

C. Miscellaneous Tests for Oohpleteness.

1. Index of Completeness of Factorization
If the uniqueness aJ of a variable X is broken down in

unreliability c2 and specificity b2, that Is

a2 = ,+C2

then the index of completeness of factorization is defined by

100 h2

j 2 J(h2 the communality).
h-b

2

This index can well be used to decide whether factorization was carried

too far cr not; for almost no variable X. should H be in excess

of 100. Especially in the analysis of psychological tests into comimOn

factors, this analysis should not be carried to the point where rMal

specific factors disappear.

2. Listing of Other Completeness Tests
Th.:e does exist a varietv of other methods for checking completeness
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of factorization. Since they are partly simple ones from the early

days of factor analysis or do not have important effects on factor

analysis, we will indicate them here only, referring to the papers

where they can be found.

(1) Plotting the distribution of the residuals after extraction

of k factors and comparing this distribution with the normal

curve is described in Cattell (Reference 24, pp. 297-298) as complete-

ness check.
(2) See Mosier (Reference 33) for a comparison of six simple

methods. A short description of three of these methods, which were

found to be rather effective, is given in Cattell (Reference 24).

(3) See Reyburn and Taylor (Reference 50) for a method which

compares the frequency 'listribution of the quotients of a residual

over the standard error of its corresponding original correlation
with the normal distribution.

(4) Coombs (Reference 51) suggests a test for the centroid

solution by counting the number of negative signs left in the

residual matrix after every possible variable reflection has been

carried out and compares them with the number C of a table set
up by Coombs, which depends on the number of variables.

(5) Swineford (Reference 52) correlates the original correlations
with the series of corresponding residuals and continues factorization

until this correlation becomes insignificant.

(6) Hoel (Reference 53) attempts in his paper, less fruitfully

though, the development of a significance test for the number of

common factors. See also Burt (Reference 34) for a short outline
of the method.

(7) Wilson and Worcester (Reference 54) describe a chi-squared

test.

(8) Young (Reference 55) derives an index of clustering.

(9) In the situation where we are dealing with component

analysis (unities are employed in the main diagonal of the correlation

matrix) Hotelling (Reference 56) and Bartlett (Reference 57) have

provided statistical tests for the number of significant factors.

.(10) Humphrey (see Fruchter, Reference 35) defined a completeness

105



criterion which takes into account the sample size and depends on

the loadings of only two variables. He multiplies the two highest

loadings in a column of the centroid factor matrix and compares the

product with the standard error of the zero correlation coefficient

to establish the significance or insignificance of the factor under

consideration.

(11) It is noted for information that there exists a listing of

twenty-five completeness criteria by Vernon, et al. (Reference 58).

4.6 EIGENVALUES AND THEIR BOUNDS.

A critical problem in factor analysis is the determination of the

sample size, denoted by the number of observations N . This problem

can be seen with respect to direct dependence of N on the number of

variables or with respect to the factor analysis one wants to conduct.

The question for the dependence of the number of observations on the

number of variables is answered by factor analysts by such rules of

thumb as: the ratio of the number of observations to the number of

variables shall exceed 3 (or shall exceed 5); the number of observations

minus the number of variables rhall exceed 80. No good mathematical

means has as yet been obtained for a better determination of this 0
relationship. One indication of this relationship can be exhibited,

however. On a geometrical basis (see 2.4) one finds that, if n

number of variables, m = supposed number of common factors and the

factors are considered to be uncorrelated, then the m common factors

and n unique factors are represented in N-space such that m + n I N,

which determines: N > m + n.

The investigation reported in this subsection takes the second way
of approach to the problem, namely to consider the sample size N in

the light of the factor analysis to be conducted. In considering at

all the problem of how large the sample should be, we are assuming,

that if we would arbitrarily choose an N without reflecting upon

anything, we might obtain less "reliable" factors. Here we want to

understand by a reliable factor a factor whose loadings would change

only little if the factor analysis would be conducted on a correlatior,

matrix of the same variables but with a larger number of observations.

1.%

I00



The solution to the problem was attempted to be found in

statistical properties. Two assumptions had to be made: firstly,

the assumption that all elements rjk of the correlation matrix R

be greater than 0, denoted by R > 0, and secondly, the assumption

that the population of pairs .ji' ki), i ,...,N, from a sample

of which each element of R is compited, satisfies the bivariate normal

distribution model. The first assumption is not so stringent, since

many correlation matrices with small negative entries can be reduced

to this form, the second assumption is one which is mostly made to

guarantee statistical considerations on rlk. The case, where some

elements of R are equal to zero, can be considered also, if only

R satisfies the "irreducibility" properties, which will be intro-

duced a little later.

The statistical means to associate sample size N with the loadings
of the factors, obtained by factor analyzing the correlation matrix R,

is found in the confidence intervals, which one can compute for each

element rjk of R . By forming confidence intervals we assume that

the observed correlation coefficients are only estimates of the true

population correlation coefficients. The larger N 'is, the more does

the observed coefficient approach the population coefficient, so that

the difference between the observed r k and the confidence limits
can be called the error due to N. Now we are interested in how these

errors propagate through the factor analysis. Since the most popular

method for obtaining a factor analysis of R is the principal-factor

method, where the factor loadings are directly computed fran eigenvalues

of the correlation matrix, the question we ask is the following: How

much does the error, introduced into the correlation matrix R by way
of the fact that the elements of R are only N-dependent estimates of

the true correlation coefficient, influence the eigenvalues of R?

To obtain information about this, the following procedure is suggested.

For each rjk confidence limits are computed according to the technique

outlined in Section 2.5. For each r., we obtain two confidence limit-
(1) If (2) Cih .)<r <r (2)values, which we denote by r and r
kjk, ) k j k

If an rjk is computed to be insignificantly different from zero, we

insert the value 0.001 (or if there is an rjk < 0.001, an even smaller
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value than 0.001) for it into RI (since we do not want any actual

zero values in R ); the value rjk itself, however, is inserted

in R2. Expressing the above in matrix notation we obtain if

r~ .R, ri) e R, and r 2) c RV R, < R R2. Then we conductrjk k

principal-factor-analysis on the three matrices R1 , R, and R2.

We encounter some difficulties here. If we assume ones in the main

diagonals of R, R1, and R2 , then R is Gramian, while R, and

R2 are symmetrical but not necessarily positive semidefinite. On

the other hand, seldom is a factor analysis done on R with ones in

the main diagonal; rather squared multiple correlations or other

communality estimates are inserted in the diagonal. So, also R

differs slightly from being Gramian. How bad it is non-Gramian

is determined by the number and size of negative elgenvalues. If

they are small and few in number they can be neglected. We make

use of this fact for the eigenvalues of R; and R2. If N is

large, R and R2 approximate R closely, so that they will not

be too non-Gramian.

Under the assumption that R > 0 also R, > 0 and R2  ' 0.

This is based on the fact that the confidence intervals for each

element of R do not exceed over the zero point. If they would

exceed over the zero point, the population correlation coefficient

could be zero. But this is excluded from consideration since each

correlation coefficient is first tested for this hypothesis and the

confidence limits are only computed if the population coefficient is

not equal to zero.

Thus, since RI < R 9 R2  and R, > O, R2 > 0 we can express

R1 and R2 as: RI = R-El , and R2 = R+E2 , respectively,

where El has only positive entries and E2 has positive and

(or only) zero entries.

Our objective will now be to show the following : If ril) and

rJ2) represent the lower and upper 95%-confidence limits on the

correlation coefficient r k, by having defined the r i ) and rW

values if r. is insignificant as above, such that ri) < r !

and if rf )c RI > 0, r. R > 0, and r) c R2 > 0, then

Al < A ., where A;, A, ana A2are the largest eigenvalues obtained
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for the matrices R1 , R, and R2.

Since the loadings of the first factor are directly computed

from the largest eigenvalue, the result, which we will prove below,

clearly links the loadings (by which we judge a factor analysis to

be reliable) to the sample size N: the larger N is, the smaller

will the interval (r(l), r()) be, and correspondingly the

interval (A1,X2).

Now let us prove the statement X1 < X < X2 (under the above

made assumptions). As we pointed out earlier in this subsection,

we can make the assumption R >- 0, but then R has to satisfy the

irreducibility condition introduced by the following

Definition 4.1: For n > 2 an n x n matrix R with real

elements is called reducible if there exists an n x n permutation

matrix P (defined as a square matrix which in each row and in

each column has some one entry unity, all others zero), such that

PRP T (R 1,1 : ) ,
• 0 • I2, 2

where RI 1 is an r x r submatrix and R2,2  is an (n - r) x (n r)

submatrix with 1 S r < n. If no such permutation matrix exists,

then R is called irreducible. If R is a 1 x 1 matrix, then

R is irreducible if its single entry is nonzero and reducible other-

wise.

In the proof of our statement we will have to use either one of

two theorems, according to the assumptions made on R . If R > 0,

we shall use Perron's Theorem (Theorem 3.8), if R a 0 and R is

irreducible we shall use the following Theorem 4.4, due to Froebenius,

an extension of Perron's Theorem to irreducible matrices.

Theorem 4.4: An irreducible matrix R > 0 always has a positive

eigenvalue X which is a simple root of the characteristic equation.

The mcduli of all other characteristic numbers are at most X • The

eigenvector corresponding to X has positive components and is essenti-

ally unique (up to scale factors).

109



[0

The proof of Froebenius' Theorem can also be found in Gantmacher

(Reference 22).

Proof of the statement X ' A A2, where A is the largest

eigenvalue of R , A the largest of R , and A2  is the largest of

R 2  If x is an eigenvector belonging to A, and x1  is an
eigenvector belonging to A, we have

x x (6)

R x I  A x (7)

We have

R, = R - El , El ,

and taking the inner product of Equation 7 with x we obtain:

(xjR x1 ) I (xx 1)

(Rlx xI ) = A(X 1 ) since R1  is real and symmetric

(R - E (1) xtx1 ) 1 (x~x1 )

(xlxl) - (E xxI) A Aj(xlxl)

A - (EIxIx 1 ) A1
(xx1)

(xjx 1) is not equal to zero, since x and x have only positive
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components, according to Perron's (or in case it is applicable,

Froebenius') Theorem, applied to R and RI. So the term

(Elxlxl)/(xlxi) is positive and thus XI < A. In the same

manner it is proved that X s X2, with the equality holding if

E2  is the zero matrix, which makes (E2xlx 2)/(xjx 2) equal to zero.

Some remarks about the result shall be made next. From the

analysis of the principal-factor method it follows that:

n

n

j~l 3:

and

n j ~)a *
X2  (2 a2

or, the largest eigenvalues of RI, R, and RI  are equal to the

sum of the contributions of the first factor (in each respective factor

analysis) to the total communality of each analysis. The length of the

interval for A , namely the difference
n n n1

3[i a2 - ?  a2  (a -a
2  )X2-X a?,- 1 2• = I I- a4

j2- " =1:(2) I i =l( )ajl j=l ((2)'3 M] ( 3)

is the largest difference which we can get between the sum of the

squared factor loadings of the two first factors, obtained by factor

analyzing R1 and R The difference approaches zero when N

increases, since the length of the interval for X then becomes

smaller.

It was wished to determine the sample size N. The difference

indicates how much the contribution of the first factor can vary in
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dependence on N. In other words, it can be checked whether an

assumed N is large enough so that the variation of the first factor

contribution to the total communality of R does not exce6d a given

value (which could perhaps be computed as a percentage of the total

communality).

Example: An example was computed to show the proposed method.

The problem of 24 psychological variables, whose correlation matrix

and analysis re reported in Harman (Reference 2, page 137 and page 16F)

was taken for this example. The one insignificant negative value,

which Harman's matrix contains, was changed to an insignificant positive

one in order to meet the requirements for application of Perron's

Theorem. The sample size as given in Harman is N=145.

Let us briefly outline the kind of computations done for the

example.

(1) The two matrixes R and R were computed according to

the discussion in this subsection. The value 0.001 was inserted into

Ri , while the values r.k themselves were inserted into R when

rjk was found to be insignificant.

(2) Squared multiple correlation coefficients were computed for

the three matrices.

(3) Factor analyses were conducted on the matrices Rl, R, and

R2 . The eigenvalues and factor loadings were obtained.

For a comparative study let us now consider the obtained values.

We list the postive eigenvalues in Table 4 and then the first-factor

loadings, computed from the 3 first (largest) eigenvalues in Table 5.

It is also interesting to list the following data:

Total Original Sum of Positive Sum of Negative
Communality Eigenvalues Eigenvalues

R1 7.9184 9.8388 1.9204

R 11.8761 13.4935 1.6174

R2  21.6238 22.0108 0.3870
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Table 4

The Positive Eigenvalues of R1, R, and R2

Rjeigenvalues R-eigenvalues Rjeigenvalues

X 4 .3884 X = 7.6665 X2  10.8149
1.6844 1.6634 2.2210
1.1014 1.1785 1.6392
0.8292 0.9212 1.4155
0.4342 0.4319 0.9245
0.3608 0.4064 0.8684
0.2811 0.3199 0.6861
0.2512 0.3024 0.6596
0.2136 0.2513 0.5467
0.1482 0.1759 0.4625
0.1084 0.1082 0.3760
0.0379 0.0433 0.3235

0.0246 0.2860
0.2108
0.1943
0.1598
0.1358
0.0576
0.0286

Interpreting the obtained results, the following can be said:

(1) The 3 matrices can be considered as not too non-Gramian,

the size of the negative eigenvalues being small.. Especially, the

number and size of the negative eigenvalues of I2  are small. Here,

though, a difficulty arose when a squared multiple correlation co-

efficient, as estimate of communality, turned out to be larger than

one (based on the fact that R2  with ones in the main diagonal

has notas R does, the representation as. R = ZZT/N).

(2) Table 5 shows the expected results that all factor loadings

of the three first factors--as derived from positive eigenvalues and

eigenvectors--are positive.

(3) It is interesting to note, that both R, and R show four

distinctively large eigenvalues while there is a sharp drop in the

size of the eigenvalues after the fourth ones. Each time the four

eigenvalues account for more than 95% of the total original communality

Harman suggests the interpretation of four factors, which is applicable

to the results of R, R2  shows six distinctive eigenvalues with
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Table 5

The First-Factor Loadings Computed
from the Three First Eigenvalues

Xl 4.3884 X = 7.6665 A2= 10.8149

factor loadings factor loadings factor loadings

0.4293 0.5952 0.7012
0.1594 0.3751 0.4784
0.2222 0.4297 0.5637
0.3130 0.4839 0.5906
0.6337 0.6901 0.7729
0.6336 0.6883 0.7620
0.6291 0.6728 0.7407
0.5930 0.6819 0.7595
0.6563 0.6898 0.7540
0.2744 0.4649 0.5586
0.3711 0.5588 0.6725
0.2643 0.4669 0.5873
0.4308 0.6038 0.7181
0.2016 0.4268 0.5544
0.1465 0.3896 0.5334

0.2897 0.5144 0.6395
0.2327 0.4631 0,6180
0.2877 0.5177 0.6614
0.2284 0.4511 0.5702
0.4831 0.6164 0.7288
0.4252 0.5969 0.7285
0.4746 0.6129 0.7229
0.5827 0.6895 0.7876
0.5174 0.6532 0.7621

four of them being over one. But one has to consider 11 eigenvalues

o.account for 95% of the original total communality, while 4 (6)

eigenvalues account for slightly more than 70% (80%) of the original

total comunality.

(4) As for the main objective, the determination of N, the

result shows that N = 145 is too small to furnish a reliable factor

analysis. Already the confidence intervals are very large. For

example:

0.013 < 0.176 < 0.330 for a small rjk

114

:D0



0.635 < 0.723 < 0.793 for a large r.

The interval on the first eigenvalue is consequently also large:
4.3884 < 7.6665 < 10.8149, so that the difference

X2 - X = 0.8149 - 4.3884

= 6.4265

is even not expressible as a reasonably small percentage of the

original total communality of R.

Disregarding R2  (for its difficulties of obtaining communalities

larger than one) and considering only R and R1 we compute

A - X, = 3.2781 which is 27.6% of the original total communality

11.8761, still considerably high.

It must be concluded, that the sample size N = 145 is too small

and it would be desirable to have more observations and to do the

factor analysis over. On the other hand, both the Rr and

0R-analysis yield the same number of factors used for interpretation,
which might suggest the contrary. This emphasizes the fact, which

also Harman indicates, that proper statistical considerations are

often lengthy but do not furnish better results.

4.7 FACTOR SCORES
The computational problem of representing observed variables

in terms of hypothetical variables or factors F is only partly

solved when the factor loadings A are computed. The factor loadings

serve to describe the number of factors and the saturation of

variables by a factor. And for some purposes, such as interpretation

of factors, the loadings are sufficient. However, the complete

representation is obtained only when the factors themselves are

also computed.

In the case where the factor pattern takes the form

Z = AF
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due to inserting unities on the diagonal of the correlation matrix,

i.e., no unique factors are allowed or postulated, the common

factors F may be solved for directly since the matrix A is a

square nxn nonsingular matrix. Indeed

F = A4 Z

When communalities are placed on the diagonal of the correlation

matrix, the number of common and unique factors is greater than the

number of variables, and therefore the factor loading matrix is

singular with no inverse. In keeping with the original assumption

of factor analysis that each variable is a linear function of the

factors, it ts now assumed that each factor is a linear function of

the variables. However, since there are more factors than variables,

the factors defined by the original linear form can only be estimated

in a least squares sense by the linear form,

F z a +*gBz (p 1,2,... ,m)
p p1 pn n

It is shown (Reference 2, p. 340) that

F = STR.-Z (8)Fp p

gives least squares estimates of the factors, where the subscripts

denote columns. Factors estimated using Equation 8 have zero mean

and a standard deviation close to one but varying from factor to

factor.
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Section V

THE ROTATION PROBLEM

5.1 INTRODUCTION

After we have discussed factor solutions and problems pertaining

to them the next step in factor analysis is rotation. This problem

is therefore considered in this section. In 5.2 the rotation problem

will be stated. 5.3 gives a survey of existing rotation techniques.

A specially interesting problem is the problem of interpreting oblique

factors. Many factor analysts prefer to keep to orthogonality since

the problems, raised by the fact that in the oblique rotation, factor

pattern and factor structure are no longer equal, cannot satisfactorily

be taken care of. On the other hand, an oblique solution might be the only

adequate solution to a given problem. Therefore the important topic of

interpretation of oblique factors is taken up in 5.4.

0 5.2 THE ROTATION PROBLEi

The second part of every worthwhile factor analysis i5 factor

rotation. This procedure involves accepting a factor pattern (and other

matrices in the oblique case) with an already determined number of factors

and performing sequence of iterative matrix operations on it to re-orient

the factor reference frame according to preset boindary conditions

or constraints. The basic correlation matrix with communalities is

preserved and must still be the result of FFT (in model form).

There is an infiirite nuinber of ways to rotate the primary factor

pattern which results from, say, a centroid or principal components

analysis. Consider for i moment the analogy of defining the loci of

points equidistant from the origin of a Cartesian coordinate system,

each point simply representing another orientation of the end of line in

2-space. A graphical illustration of a typical two-factor rotation where

the variables are represented by points in a plane is shown below.

The rotation of the reference frame to a "preferred" or "Simplified"

position is both difficult and ambiguous. It is this process which is the

cause of much controversy concerning the definition of a preferred,

simplified or best solution. There have been and still are several

schools of thought on this issue dating back to the origin of factor
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analysis. The most ppular definition is one duveloptd by the

psychologists and is used extensively today-simple structure. Other

structures which are used fro time to time includu multipl--group,

uni-factor, and bi-factcr and arv characterized by a preset factor

pattern into which the loadings are to be fitted, Simple structure,

on the other hand, represents a quasi-definite ordering of a desirable

multiple-factor solution basud on factor interaction experie~nce of the
behavorial scientists. Thu rsultant pattrn initially was on containing

mstly very high and ve lw ladings distributed in such a way that

the following three conditions were met:

1. each row should contain at least one zero

2. each column should contain at least as many zccs as ther

are common factors

3. for every pair cf factors there should be at least m voriableo

which do not load high on both factors ( m being the number of common factors)
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These conditions were first established by Thurstone (Reference 44)

and later extended by him to provide "insurance"in his own studies as

follows (Reference 25):

1. each row should contain at least one zero

2. each column should contain at least as many zeros as there are

common factors

3. for every pair of factors there should be several variables

which do not load high on both factors

4. for every pair of factors a large proportion of variables

should have zero loadings on both factors when there are more than three

factors

5. for every pair of factors there should be only a small number

of variables with nonzero loadings on both factors.

If simple structure s decided to be the acceptable format for a

factor pattern, one may choose from several factor rotation techniques, each

of which provides a slightly different variation of the main theme. If

another factor structure is desired, rotation may be exceedingly complex

if not impossible!

5.3 SURVEY OF ROTATION TLCHNIQUES

In general there are two distinct categories of factor rotation--

orthogonal and oblique--which differ widely both in ccncept and inter-

pretation. The idea of strictly uncorrelated factors in the orthogonal

structure, whether simple structure or not, has contributed significantly

to the extensive usage of the orthogonal solution in a final analysis.

Simply summing the squares of all the factor loadings for any given variable

yields its common factor variance, thus, the importance of an individual

loading is easily determined. This is not at all the case in oblique

factor structures where nonzero correlations among factors necessitate

rather tedious matrix manipulations which heavily tax the skills and

patience of the user. A simpler method to determine factor significance

is not yet known but the problem is considered later on in this section.

It is indeed unfortunate that interpertation ease has dictated the

unquestioned popularity of the orthogonal methods since the shortcomings

of a linear model are confounded by a further restriction of uncorrelated

factors. A more realistic model (naturally there are many problems which
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fall into the "straightforward" class whereby all of the common factor

variance can be accounted for by the first few factors and furthermore

can be interpreted as definite ofthogonal physical factors) in the physical

world is, of course, the oblique factor structure if the intent of the

analyses is one of discovering physical entities. In data reduction

problems the orthogonal patterns are quite acceptable.

Helpful in the selection and comparison of simple structure rotation

techniques is Table 6 extractud in part from Harman (Reference 2, p. 310)

where short expressions for Quartimax and Varimax orthogonal rotati6n

techniques and Oblimax, Quartimin, Covariminj Oblimin, and Kaiser-Dickman

oblique rotation techniques are given. The fQllowing notation is adopted

for the table:

(a ) = initial factor matrix,

(bp) = final factor matrix,

(v. ) final factor structure matrix.

It should be noted that major differences in these techniques occur both

in concept of a "best" simple structure and in computation procedures. The

orthogonal rotation problem is pretty well resolved by Varimax, Quartimax

at best being a good estimate. The oblique techniques require enormous

computation efforts and generally result in "not quite" solutions which

call upon Cattell's Maxplane, or Rotoplot, for polishing.
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5.4 INTERPRETATION OF OBLIQUE FACTORS

A. Introduction

The factor analysis model involves the simultaneous linear descrip-

tion of n variables by m common factors and n unique factors.

Z, allF + a12F2 + + a F + alU 1

j 1 12 2 jm m I I

Z = a iFI + a F2 + .. + ajmFm + aU(

Z n a nlF 1 an2F2 + + a anmFm n anUn

The factors are, of course, hypothetical and their description is usually

given by a pattern matrix A (a p ) of common factor coefficients, and

a structure matrix S = (S ip), the set of correlations between each

variable and factor.

The invariant part of a factor analysis solution is the subspace of

common factors, common-factor space, defined by the set of standardized

column vectors F ,..., F . The n-space of standardized variables
I m

Z. lies hopefully close to the m space of common factors and each

variable is projected onto common-factor space by its unique factor,

a.U.. Selecting a particular solution for the factor analysis model.)J
corresponds to selecting a set of basis vectors {F ,.. , Fm) to describe

the invariant common-factor space.

The projection of variable Z. on common-factor space is Zi , the

prediction of Z. from the common factors alone.

Zj a.ir F +a.ar ... +a F* , (2)
Z a)i FI +) 2 F2 + +ajm Fm(2

so that

j J a124
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Thus the variance of Z is

(ZjlZj) I (Z.jl.) + 2aj(ZjlUj) + a(UjU) (4)

The variance of Z. is called its communality h.2 . Because the unique

factors are orthogonal to all common factors, (Z.IU.) 0 and since the

variance of the unique factors is one, Equation 4 becomes

var (Z.) 1 h. + a.
3 3 3(5)

The communality h. is the variance explained by the common factors.
3

Both h. and a. are fixed for any factor analysis solution, hence
3 3

for the entire set of particular solutions generated by rotating the

common factors to different bases for common-factor space.

B. Problems with Oblique Factors

In order to understand intuitively the dimensions of common-factor

space or to identify factors it seems likely that an oblique set of

factors is preferable. In addition, a factor which has been placed

close to a group of real, observed variables would seem more likely

observable itself.

However, there are serious problems involved in the interpretation

of the output of oblique rotations which have discouraged many workers

from leaving orthogonality. The pattern and structure matrices are not

identical and they are both tricky. For some examples let us consider

two-factor space: Zj = al FI + a j2F • A variable may be uncorrelated

with a factor E 1 and yet have a high loading a 1  on it or it might

have a large positive structure value sj and yet a negative loading

a.1 . (See Figure .)

The basic difficulty in interpreting the structure matrix, and part

of the reason for these seeming discrepancies between structure and

pattern, is that the variable-factor correlations are affected in the

oblique case by the correlations among factors. This will be explained in

more detail later. Moreover, two variables may be correlated with one
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Figure 6. Relation between Factors and Variables

factor as high as .707 and yet be totally uncorrelated themselves, making

it difficult to pick out groups of variables and fit them to factors by

examining structure alone.

The problem with oblique factor patterns is that the sum of the

loadings squared for one variable

m

p l I
p

must no longer equal the communality or even be less than one, as in the

orthogonal case. Although rotation tends to purge middle-sized loadings,

it may result in loadings greater than one, or in several large loadings

which indicate not so much linear determination as they do that the factors

are highly uncorrelated (or correlated) as in Figure 6.

We may state the problem: given the linear representation of Z

as in Equation 2

Z. a. F + a. F + .. + a.F
3 11 2 2 jm m
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how "important" is each factor in the determination of all the values of

the vector Z•)
The contribution to the variance of Z. is the measure usually used.

The variance of Z. is

m m M m
(Z.IZj) = h ] = .ajpa q(Fp IF) X I a.pa.qr F (6)

p-l q=l p=l q =1  Fp q

When the factors are orthogonal, it is

rFpF = (FpIFq) 1, p=q: p q

so that

2 2 22
h. a. + a + +a A (7)

3 31 32 3m

Thus the contribution of each orthogonal factor to the variance of Z.

is the square of its loading. This clean resolution of variance explains

why orthogonal factors may be easily interpreted; their relative impor-

tance in determining all the values for a variable can be separately

evaluated.

However, for oblique factors the terms containing rF F p P~q,

do not drop out and we have p q

h = a2  +a + -+a + (aar +a. a.rFF)

11 )2 m ajaj2 F F 3 jm
12 M

(8)

2(j2 a j3rF + ' + aj2 a jmF F + "'" + 2a" a'rF F )
]2 ri3  m  m- m

The terms a are called direct contributions. The mixed terms may]P
be named two-factor interactions and they cause the problems. These

interactions are not variance "contributions" because, for one thing,

they may be negative. They may be looked upon best as corrections
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applied to the direct contributions a2  due to the tendancy of one
3P

factor to vary with another6

One method of separating the total variance into components for each

factor is to simply divide the interaction into halves and assign a half

to each factor. This results in:

m m
h2  = a a r F F + + aj a rFF
3 pl ii iPF1 p1- un P p m p

m mh2  a rF F +"+ a I ar
j ip 3P I P P jFmFp

h2 as + .+a . (9)i j i sj ! " jm jm

The terms of Equation 9 might be said to approximate the contribution

of each factor to the variance of Z J. In the orthogonal case it reduces

to Equation 7 and it often gives an enticingly clear picture. But it also

results in negative values whenever ajp and sip are of opposite sign.

This is one indication that the interactions are simply that--interactions--

and cannot be resolved into shares.

Any procedure such as halving the interaction which gave us a matrix

of contributions to variance could generate an orthogonal pattern simply

by taking the square root of each element. Therefore, because each set of

factors has only one pattern, A, no oblique factors may be so resolved.

When the factors are correlated, the analysis of variance model (separating

the sums of squares) can no longer be used but a new model must be formulated.

(Reference 61, p. 464, p. 634).

C. Factor Analysis and Regression Analysis

To facilitate the development of a statement concerning the contri-

bution of oblique factors to variance, let us show that the factor pattern

equations are a set of classical regression equations of the variables Qn

m common factors.

The factor analysis description of a variable Z
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Z = ajFI + a.2F2 + +.. a.j F + a.U (10)

is simply a linear equation of the variable Z. in terms of mdl others.

It makes no difference mathematically that the one is observed and the

others hypothetical. The -value of Z. predicted by the common factors

is ~

Z. a F + + a. F
I ajIF 1m m(1)

Harman (Reference 2, p. 18) proves that Equation 10 is a regression

equation but we may just as easily prove the more pertinent theorem

that Equation 11 is a regression equation.

The sum of squares of residuals for Equation Ii (over the N

values of the vector) is

' (Z - )2 1(Z Z (z. ai=l ji - ]

Since a3 = 1 - h3, j 1, • , n, are unique for any factor analysis

solution they may be regarded as at a minimum for a set of factors (this

assumption also defines the factors as least squares estimates). Hence

Equation 11 may be regarded as a least squares solution and a regression

equation with a standard error of estimate aV.

A regression equation is usually represented:

Y = bix1  + b2x2 + .+ bxm + e

or simply in vector notation

Y XB (12)

where Y is a least squares estimate to Y; Y, Y, X are score vectors:

B is a coefficient vector. We may easily imagine Y and B extended

to matrices of column vectors. The factor analysis model uses row vectors
for scores and linear coefficients. Assuming that all variables are

standardized we may let
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F' X

AO B

and

Z AF

Z' F'AA' i e4uivalent to Y XB

Thus the factor pattern is a set of regression coefficients.

The regression analysis solution for B is

X'Y = X'XB
B (XX) -X'Y (13)

The C matrix is usually defined

C (X'X) .

and then

B C X'Y

In factor analysis we are given

(X'X) FF' 0 (14)

so that

C 2

and any uses for C may be referred to 01, the inverse of the matrix

of factor correlations.

The multiple correlation of Y on X ,..., Xm  is defined as

ji m
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(Section 2.7). Thus, letting q stand for all X, p = 1, ...P m, ad using

standard notation for multiple correlation:

(Y IY)
X 1 m 2..

But

Y Yj + a.UJ 9 (.Itj) : 0 1 and (Y.IjY) = 1

,so that

(Y Iy)
Ry N z---- hi (15)

Hence the squared multiple correlation of a variable on the m common

factors is its communality, or its explained variance.

D. A Proposed Measure for the Importance of Oblique Factors

Methods usually associated with regression analysis enable us to

make a statement regarding the contribution of correlated factors to the

variance of their dependent variable. It concerns not the direct

contribution which we have shown to be meaninglzss in the oblique case,

but the amount of explained variance which a factor adds after all others

have been taken into account. Although this measure is probably as much

as can be said about the separate effect of a factor, it is a natural and

useful statement.

As stated before, the variance due to oblique factors cannot be

simply divided among them, due to the two-factor interactions--the tendency

of factors to vary together. Hence we might search for a way to examine

the relationship between a factor and a variable with the other factors

held constant. We tend to assume that if a variable and a factor are

correlated that the factor is (mathematically) affecting the variable;

but with correlated factors the observed correlation between variable

and factor may be spurious--the results of limitations placed on their
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correlation by being both tied to a second factor. Ezekiel (Reference 23,

p. 195) states the other possibility: "It is evident that a mere surface

examination of a set of data cannot reveal which independent factors are

important and which are unimportant. A factor which shows no correlation

with the dependent variable may yet show significant correlation after

the relation to other variables has been allowed for."

Consider three correlated variables. If the correlation of two

variable, were measured for groups of fixed values of the third variable and

a weighted average formed, the correlation would probably be different. We

called such a measure partial correlations (Section 2.7) and it may be

written in terms of simple correlations.

r =2 Z12-r 3r 2 3  (16)

13 23

This value is the correlation of one and two with the disturbing effect

of three removed. (A proof of Equation 16 may be found in Reference 62,

p. 479) The relationship between partial correlation and multiple correlation

(explained variance) is given as follows (Reference 63, p. 344) for the

regression of Y on 4 factors

1- 2 (1-r2 )(-2 )(-2 )1-r2

4.1234 Y1 Y2.1 Y3.12 y4.123) (17)

This expression may be extended to the regression of Y on X, to X

by multiplying the right hand side of Equation 17 by appropriate terms in

the series. Thus if we let q represent all factors but those to the left

of the dot and in parentheses beside q

N =q (-'~ (X p l1-rYXp.4

The order of X's does not matter; X , may be any of the factorsp
X1, ... 0 Xm . Solving for the partial correlation squared

= I-(2(
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For four factors the partial correlation squared between Y and X becomes
2

r - .134)-(I>R .1234)I 2 (1-•1 ()1')
Y2 . 34  (I R2

Y.134

Simplifying the numerator of nquation 19 yields 2 -2

R 123 , Ri-13 4

Recalling that multiple correlation squared equals communality and gen-

eralizing to m factors, the numerator of Equation 19 is seen to be

the difference between the explained variance of Zj as a regression

on all m common factors and its variance as a regression on all the

common factors but one. Let this difference for the omission of factor

F (X is equivalent regression language) be denoted by v.
p p jP
This is the proposed measure. It has shown up while examining the rela-

tionship between a variable and a factor with the disturbing effect of

other factors, due to co-variance, removed, as it is implicitly with

independent factors.

We may define the unique contribution to variance v? of factor
. tP

Fp for variable Z as the additional variance explained by factor p

after all the variance of Z. explainable by the other factors Fk,k $ p
has been taken into account. More formally

v R2 . R 2  (20)
Y..q Yj .q(Fp)

and we state a theorem which is proved at the end of this section. When

v2 is the unique contribution to variance as defined above

b?
v . = (21)
]p Cpp

or in factor analysis notation
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a2

ip 0-l (22)

pp

Due to the interactions this expression is about as much as can be said

about the separate "importance" of the oblique factors to the explained

variance. It represents the part of the total variance which must be

explained by that factor or be lost--a natural and meaningful measure.

Furthermore, the coefficient v2  is a generalized measure for all sets
jp

of factors, orthogonal ones being a special case which happens to sum to the

total explained variance. This phenomenon exists because the interactions

are zero and thus a factor's contribution cannot be particularly picked up by

another factor. Notice that then ' I and Equation 22 reduces to

V2 a 2V p = ap

For oblique factors

m

v2 < h

p lI

which indicates again that part of the explained variance is not "unique"

to any one factor.

Using Equations 15, 19, and 20 the partial correlation between Y and

F becomes
p

rYFp.q -q
l-h ] + V2 p

It is a measure of the correlation with other factors held constant, and

it might be used in a "corrected" structure matrix to help name the factors.

The square of this term is seen to be the unique contribution to variance

divided by the variance of Z with Fp removed, or simply how much

(a ratio) of the otherwise unexplained variance it explains. It is used

by several authors as a measure of the importance of factor F . However,p
v seems to be a stronger measure because it is desirable in factor
]p

134



analysis to keep our "importance coefficient" in terms of variance and

absolute for inter-variable comparisons.. Thus for evaluating the impor-

tance of a factor v.2 is preferable.
jp

It is important to remember that the contribution to variance of an

oblique factor is not a unique value but a range of possible values. We

may think of v. as a sort of lower bound to this range. Perhaps it
3p

would be worthwhile to also set an upper bound, or to examine the conse-

quences if two or three factors were removed at a time. Further investi-

gation of the problem is needed. This section offers v. as an easily
]p

computable measure of the unique contribution to variance. Perhaps it

and other measures to come can put oblique rotations on the road to

engineering practice.
- thProof of Equation 22: The elements of any j row (or column)

of (X'X)-  C=V -1  divided by the negative of diagonal element c..

give the regression equation of X. in terms of the other X's.

C. C. C. 1 C.
X 31- c. X-1 c.. X+l T.. X (23)33 33 33 jj Xj1 cji j1 c m

Let us prove Equation 23 in more useful terms, using the column

vector Y instead of X. and letting X be a set of column vectors2
X,...,X , from the partitioned matrix [YjX]

Then let

F [YIx)'[Ylx] =:.YIX] [1'1YX. Lx Y I X1x

(F is simply the matrix of correlations for the columns of [YIX] as

is for X).

Let the partitioned inverse of F be

e*D F~ - (EY1xJ'[Y1x1)f'.

Then
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and one of the four resulting equations is

X'Ye + X'XD' 0 (24b)

therefore

1D' (X'X)"  X'Y B . (24b)

But the expression in the middle of Equation 24b is the-least squaras

solution for thu rgogrission coefficients B in Equation 13 and D is a

column of F- 1. Hence Equation 23 is true. We may also show from

Equations 24a and 24b that

Y'Ye + YXD' I .
Y'Ye - Y'XBe = I

Hence

e (Y'Y - Y'XB)

For standardized variables Y'Y is one; and Y' is a row vector of

values while XB is a column vector of least squares estimates of those

values.

Thus

Y'XB Yj (YIY) q

and

1

e - (25)
2-,.q
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This is the well known fact that the diagonal elements of R-1

contain the multiple correlation of one variable on all the others.

Now we may examine the effect on a least squares regression equa-

tion of eliminating a factor by studying the effect of eliminating a

row and column (before inverting) on the inverse of a correlation

matrix.

Specifically, let G l = (gij) be the m x m matrix of the

inverse of G where G is formed from F (fij) as before by elim-

inating factor X U

Brownlee (Reference 62, p.489) gives us the formula

gi. f iuJu (26)
1) ii fUU

In particular for the diagonal elements of G- 1 corresponding to

vector Y

f2

g y f f YU(27)

uu

The matrix C as defined previously may be thought of as the inverse

of the matrix of F after removing the variable Y

Thus Equation 26 becomes

f. f.
cij fij - f

ij .fyy

Letting i=j=u and solving for f in the above equation

f = c + f y (28)uu uu f
yy

Equation 27 may be written
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f f -f 2= y yfuu "Yfu

yy f
uu

Substituting Equation 28 for f and noting that f = fuuyu uy

f2 c
gy uu (29)

YY c f + f2

uu yy yu

According to Equation 23

f
Yu=_
yy

where b is the regressive coefficient of Y on X

But " f and g are diagonal elements equivalent to e in Equation 25.

Hence

1 R20
y - y. q(X)

and

f1 1 R.q

fyy q

so that Equation 29 becomes

f2 b2
+ Yuyu_ 2 :I- +v

S2 1 .q(X ) 2 q c
&yy yy fC Xu uu

or in factor analysis notation for a particular Z. aft.r rmnoving F
J p
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b. a

YP Vq) p pp 0

which is Equation 22.-

For m=3 and p~l Equation 22 may be written

I.123 RY .23 c1

and this equation may be found in Reference 63, p. 339.
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Section VI

UNIQUENESS OF FACTOR ANALYSIS

6.1 INTRODUCTION

Section Vi deals with the problem of uniqueness in factor analysis. The

concept of uniqueness is described in subsection 6.2. Uniqueness, on

the other hand, is closely related to the much more practical problem of

how large a sample one has to have for doing a factor analysis. So 6.3

shows this relationship and then establishes a means how to solve the

two problems, which are actually the one problem of uniqueness in factor

analysis.

6.2 THE ISSUE OF UNIQUENESS

The issue of uniqueness can be described as follows. Two independent

teams are told to collect data and perform a factor analysis of a certain

subject matter area. The issues are described in the same way to each

team. Data collection and analysis is performed independently by each

team, independent decisions are made about factoring, and separate final

reports are drawn up. The issue of uniqueness is this: will the reports

be "basically" the same?

Of course, the issue has been transformed into one centering on the

meaning of "basically." If the picture is redrawn slightly the issues

will be clearer. Suppose, to make it more specific, that the study is

the psychological one mentioned above, focused on one large school, and

using examination results of students to uncover mental factors. As we

now impose more conditions on the picture, the reports of the teams ought

to grow more and more similar. First we require that neither team makc

longitudinal studies, then we require that there should be no separate

analysis for males or females, nor for school grades. Next we require

that neither team invent and administer to its own test on, say manual

dexterity or reading speed. Finally, we require that each team use ths

same squared multiple correlation for communalities, and varimax rotation.

It should be clear that continuing to standardize the teams will lesd

us to the point that any discrepancies between the final reports must be
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due to sampling--one team selected one group of students, and the other

team selected another group. There may have been an overlap, but still

the final reports are different.

Let us now make one further change in the foregoing picture.

Suppose that one team has studied boys only, and the second has studied

girls only, and we wish to know whether the differences in their final

reports are due to sampling differences, or to sex differences. Here we

are at the crux of the issue of uniqueness. If the two teams were

measuring some simple statistic, like the classroom grade or height, the

issue could be simply resolved by the appropriate F-test or t-test, but

in factor analysis we are dealing with a highly complex set of inter-

related statistics.

6.3 SAMPLING CONSIDERATIONS

Although it may not appear so at first sight, the issue of unique-

ness is also very closely related to the much more practical problem of

how large a sample one ought to work with in a factor analysis. Of

course if observations are cheap, there is no problem, and the issue is

resolved by considering the clerical facilities available for copying

or punching numbers. Bad data can be freely edited out, and there is

only one question facing the investigator: is the data really repre-

sentative of the population of response-about which I wish to make

inferences? More specifically, the issue can be rephrased as follows:

when an outlier is thrown out because it is unrepresentative, can I be

sure that I am drawing inferences about a population which is also

free of"unrepresentative" observations? If the answer is no, then the

investigator should not throw out such data.

Usually observations are expensive to collect, and one cannot

simply choose 1000 observations because it is a round number. The

investigator must select one sample of 200, say, and remind himself that

another investigator in doing a similar factor analysis might have

selected a different sample of 200 to work with. The conclusions of one

investigator should not contradict those of the other, no matter whether

the second investigator is real or imaginary. So here again we are at

the same issue as that posed previously as the issue of uniqueness.
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This time phrased non-technically, we call it the issue of sampling

varialility. Much of the purely mathematical statistical issue has been

resolved, but the conclusions have not yet been formulated in terms of

rules of thumb which the non-professional can use.

To develop such rules, a simulation program has been written.

Basically, it set several imaginary investigators to work on the same

data, as described above. Differences between the results of these

investigators are then examined, and in this way we can discover how

tentatively one investigator must describe his results in order not to

contradict or be contradicted by an imaginary colleague.

Since we shall assume that the data available to investigators are

normally distributed, the starting point of any such simulation will be

a need to generate multivariate normal deviates in the computer. This

issue does not seem to have been dealt with directly in the literature,

but can be solved in the following manner. Let us assume that random

normal deviates are available as needed. These can be generated directly

through any of the methods now available, or generated Indirectly through

a random (rectangular) number generator plus a "normit" routine which

provides a normal deviate corresponding to any desired probability level.

The probability level of course will be obtained from the random number

generator. With such random deviates x freely available, drawn from

a standardized population with mean zero and variance unity, we desire

to generate a multivariate normal vector variable y which shall be

standardized to zero mean and unit variance, but shall have any prescribed

covariance, i.e., correlation, structure R. The positive definite

correlation matrix R, of size n x n, will then describe the population

which we are factor analysing. If R is the unit matrix, then y =!

will serve as the generated variable, but in general it will be necessary

to discover the non-symmetric matrix A, of size n x n, which has the

property that

y Ax has correlation matrix R.

The covariance of the vector variable y is given by
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E('y) E(x' (A'A)x).

Using the fact that x is standardized, we can expand the condition

that y have matrix R (r.) by expressing it in terms of conditions
1)

on A = (a.

There are enough degrees of freedom that we may immediately impose

the condition that y be standardized. In this case the covariance and

correlation of y are identical and the simple condition that A must

satisfy that

A'A R.

Expanding this, it is a system of equations

Yakiak = r..

with diagonal elements, specifically,

i = rii
=

and r.. r..

following trivally from the above expansion.

A simple example will illustrate the situation here. If n 2,

we have two independent standard normal deviates x, and x., and wish
to manufacture two other variates yI and y2 with the property that

they have a desired correlation r with each other. It can easily be

verified that if y, and Y2 are defined as

y!= x 1

Y2 = rx1  + /2 . 2

they will have the desired property. The matrix A thus defined is

easily constructed for n 2. For n =3 it will be seen that the
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algebra becomes complicated. There will be three specified correlations

r12 . r13 and r2 3  Building up the desired variates as before, we have

11

Y2 r 12Xl r 112 X 2

r2 3  _ r1 2r1 3  +aZ x

Y3 r3 1 2 13 3
$1- r22

where a is the coefficient of x2  in Y3 Although the algebra rapidly

becomes impossibly complex, the process is very straightforward and can

easily be built into an algorithm for use in a computer. Specifically, if

i exceeds j , a will be developed in such a way as to produce'the

desired correlation rlj , and if i equals j , the coefficient will
be developed so as to ensure unit variance of the corresponding y

The above transformation, or one similar to it, has been used in

other connections by various authors, but ordinarily for the opposite

purpose, namely to provide uncorrelated variates from correlated ones.

It is important to note that the transformation will produce

conservative results. That is, the correlation matrix will be treated

as if it were a population matrix, even though it is only a sample matrix.

Thus the later sample correlation matrices which are developed by the

algorithm will be more like the original sample matrix than they really

"ought" to be. The only alternative would involve building a model based

on "fiducial" distributions of population parameters, and strong exception

would be taken to this procedure by many investigators. The results

coming from the program are striking enough that the conservatism is not

objectionable.

A computer program, within the UNIVAC 1105, has been developed

incorporating the above algorithm. Basically it contains the following

prodedure.
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1. Reads the input correlation matrix R , the sample size N to

be used, the matrix size r , and the number of iterations to be made of

the program (see below).

2. Generates N vector variables y which are pseudo-random

samples from a normal population with correlation matrix R.

3. Forms the correlation matrix of these variables.

4. Calculates the squared multiple correlation estimates of the

r communalities, perform the principal-factor solution to the factor

analysis.

5. Prints out the sample correlation matrix and associated

communality estimates, and the characteristic roots and scaled vectors

of the solution. Saves the answers in computer binary format to be

used below and in the varimax rotation program.

6. Repeats steps 2 to 5 above the number of times requested

in iteration parameter in step 1 above.

7. Calculates the averages and variances of all the eigenvalues0 . and eigenvectors and prints these out.

8. Returns to step 1 above unless directed to terminate the

program.

The purpose of the program was two-fold. First, to see how the

stability of estimates increases as sample size N increases, and

secondly to see how this same stability is influenced by the correlation

structure. Most of the runs were performed with independent population

data, so that roots and vectors were calculated from data with the

identity correlation matrix. The number of iterations under various

parameter combinations is given in the following table. A non-orthogonal

design was used because of the machine time and costs associated with

large variate sizes, and was close to optimum when these costs are

considered as part of the design.
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Table 7

Number of Computer Runs of Factor Analysis

on Independent Data

Sample Size

No. of
variates 100 200 300 Total

30 3 3
20 11. 11
10 6 6 6 18

Total 17 9 6 32

In addition, 11 iterations were made on the classical 24 psychological

variate test data from the Spearman-Holzinger Unitary Trait Study, used by

Harman (Reference 2) and others. The same N of 145 was used as in the

original study, and of nourse the number of variates, n , was taken as 24.
Some general conclusions of practical relevance are as follows.

1. When we are sampling from independent data, the use of squared
multiple correlation (SMC)"communalities tends to create #.errors of the

first kind." That is, it leads to production of one or even two roots
which are relatively larger than all the others. For instance, in one of

the three iterations for N = 300, n = 30, the two largest roots

were .95 and .91, followed by much smaller roots .37, .25, .23, etc.

To describe the situation intuitively, what happens is that if the
sampling from independent data appears by accident to produce something

that looks significant, the SMC procedures jump on it and try to make it

look good.

2. When SMC communalities are used, common practice is to assume

that there will be one insignificant positive root for every negative
root. From the previous paragraph, it can be further suggested that ono
and possibly two further small positive roots can be assumed insignificant

because of the SMC bias mentioned above. Of course, unless the roots

are much in excess of unity there can be no significance imputed to them

in any case. Insignificant roots tend to be largest when N is smal1
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and n is large, as one might expect. When N 100, n 20, for

instance, half of the largest roots exceeded unity, but none was larger

than 1.18.

3. The sampling variability of the largest root in independent data

is surprisingly independent of both N and n. The variance is approxi-

mately .01. It is much larger if the root is significant, but the

coefficient of variation, i.e., the standard deviation relative to the mean

remains relatively stable at about 10 per cent. This can serve as the rule

of thumb for largest eigenvalues.

4. The sampling variability of the eigenvectors corresponding to the

largest root in independent data depends on both N and n. The variance

of the eigenvectors decreases approximately as the inverse of the square

root of N. Thus it is relatively insensitive to changes in N. To

illustrate, if N = 100, n = 10, the variance is .048 and the standard

deviation of course is .22. If we take four times as many observations,

the variance is reduced by one-half, and the corresponding standard deviation

is .155, nota great improvement on .22 considering the quadrupling of data

involved.

This sampling variance also diminishes as n increases. However, the

relationship here is much more complex, and the experimental design used in

collecting the data did not permit high clarification on this point. As a
tentative approximation, it appears that the sampling variance diminishes

as the inverse of n.

The foregoing conclusions seem to be at variance with those of Harman
(Reference 2, Appendix, Table B), but comparison is not possible since his

results do not apply to independent data. From practical experience, it

seems desirable to make the pessimistic assumption that the numerical

information one has collected does not look encouraging and that the

investigator would be happy to find any significant pattern at all in it.

The rule of thumb suggested from the foregoing is that the variance of
the eigenvectors corresponding to largest roots in independent data is

5/n"l.

5. When the data contain significant material, the sample eigenvectors

do have a population value to gravitate towards, and hence the sampling

variability of the coefficients diminishes. I' th U:.;:t.,!r t -a the
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variance of the eigenvectors corresponding to the largest root was .004.

For smaller roots, where sampling error only is being measured, the variance

increases to where it corresponds to that of independent data, as one would

expect. This variance of .004 is only one-tenth what one would expect if

the same parameters had operated on independent data.

Unfortunately, no dependable rule of thumb can be inferred which would

apply to all data. It will depend on how strong the population eigenvector

is to which the sample is tending. As a very crude first approximation,

one might measure this strength by means of the largest eigenroot V, and

hence adopt 5/Vnvr-N as a rule of thumb for the variance.

One further important possibility opens to the investigator because of

the relative unimportance of the size of N. If the investigator has say

400 observations, he can do one analysis on all the data, and then divide the

data in half at random and do separate analyses on each half as well. Because

the data from 200 observations will be nearly as "good" as that from 400,

it follows that any factor that seems to appear in the analysis of the 400

observations is dependable only if it can also be discerned in the analysis

of each of the two halves of the data.

6. The most unexpected result of this investigation is that with the

use of SMC communalities on the Unitary Trait data, it can be statistically

established through the sampling scheme used here that there is only one

significant factor in the data, rather than four (e.g., Harman, Reference 2,

Table 9.22).

To begin establishing these results, it is instructive first to compare

the difference which the choice of communality imposes on the size of eigen-

values. The averoid and bi-factor data in Table 8 are from Harman (Reference

2, Table 9.21). The calculations were actually performed on different

computers, as well, but Harman establishes (Reference 2, Table 9.23) that
only very minor discrepancies can be associated with computer-to-computer

differences. Major differences are due primarily to choice of communality.

It is strikingly evident that both with Sf'C communalities for the

correlation matrix, and also with the average of eleven eigenvalues based

on sample matrices from this matrix, the significance has all been

concentrated into a si.'le general factor. The similarity of this factor to

he general factor based on other communality estimates is given in lable 9.
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Table 8

Relation Between Communality Estimate and Eigenvalues
of 24-variable Matrix, With Sampling Error

Communality Estimate

Sample S. Dev.
Order Averoid Bi-Factor SMC SMC (10 d.f.)

1 7.63 7.66 7.66 7.55 .57
2 1.65 1.65 .38 .56 .33

3 1.17 1.18 .38 .34 .06
4 .90 .96 .29 .29 .07
5 .40 .42 .24 .26 .06
6 .35 .40 .23 V21 .06
7 .27 .31 .20 .18 .04
8 .25 .30 .18 .15 .04
9 .21 .23 .14 .12 .04
10 .14 .16 -.04 .10 .04
11 .07 .19 .00 .08 .04
12 .01 .05 -.01 .05 .04
13 .00 .03 -.08 .03 .06
14 -.04 -.01 -.08 .01 .06
15 -.08 -.07 -.10 -.02 .06
16 -.09 -.07 -.12 -.05 .07
17 -.13 -.09 -.15 -.08 .07
18 -.16 -.14 -.15 -.09 .08
19 -.18 -.16 -.17 -.12 .08
20 -.20 -.19 -.25 -.16 .05
21 -.24 -.21 -.27 -.20 .05
22 -.26 -.23 -.39 -.23 .05
23 -.31 -.27 -.43 -.28 .06
24 -.34 -.31 -.49 -.34 .08

It is clear that there is general agreement between this main factor

calculated in the various ways. The first value in the "Average SMC"

column for instance, .580, is the arithmetic average of 11 values., each in

turn calculated from a sample of 145 observations. Those eleven values

range from .472 to .669 with a standard deviation, as indicated, of .072.

(There is a slight downward bias in these averages as calculated, because

they have been scaled in the square metric to the eigenroot, and any

averaging of the numbers ought to be done in the same way instead of

arithmetically as here.)
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Table 9

Comparison of a General Factor in 24-variable Matrix
as Identified by Alternative Communality

Estimates, With Sampling Error

Population Average S. Dev.
Test Averoid SMC SMC (10 d.f.)

1 .596 .595 .580 .072
2 .373 .376 .367 .077
3 .418 .425 .421 .072
4 .484 .487 .451 .048
5 .689 .690 .658 .063
6 .685 .686 .684 .053
7 .676 .673 .663 .044
8 .676 .678 .647 .051
9 '.693 .693 .675 .065

10 .466 .463 .463 .077
11 .557 .560 .550 .049
12 .466 .468 .485 .068
13 .601 .600 .593 .060
14 .425 .424 .423 .058
15 .391 .390 .364 .058
16 .506 .509 .498 .050
17 .465 .465 .462 .078
18 .520 .519 .511 .099
19 .444 .451 .483 .098
20 .616 .619 .631 .063
21 .595 .598 .597 .030
22 .612 .614 .615 .041
23 .690 .693 .686 .057
24 .651 .653 .656 .040

V 7.628 7.665 7.550 .58

So it would appear that the averoid-based general factor might have been

hit upon by chance due to sampling the data and calculating SMC-based

communalities. The surprising thing however is that the averQid-based factor

is only one of four (see Harman, Reference 2, Table 9.22) whereas all the

SMC-based samplings succeed in concentrating all the factor information into

single factor.

A somewhat similar sampling relationship will come out if we compare

communality estimates. Briefly, the averoid estimate for the first tet was
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.505, whereas the sampling provided 11 SMC estimates, varying from .428 to

.666 and averaging .579. However, here we begin to discern the discrepancies

which produce further factors in one case but not in the other. Nine of

these eleven SMC estimates exceed the averoid estimate. In later tests all

11 SMC-based communalitics exceed the corresponding averoid communality.

The result of this is that the factors of verbal rigidity, spatial, and

memory, discerned by. averoid-based communalities, are all absorbed into the

general factor of the SMC-based communality. The 11 eigenvalues of the

second factors have an average value of .556 as given in Table 8. Only

two of the eleven exceed unity, and these two do not have the same sign

pattern as any of the factors of Harman (Reference 2, Table 9.22).

As any objective test of the insignificance of the second factor, a

sign test was made of the eigenvectors from the eleven samplings. If any

significant weight, plus or minus, was in this second factor, then there

would be a tendency for plus or minus signs to occur opposite that test in

each of the eleven iterations. With 11 iterations and half of the weights

minus, a non-parametric 1 per cent test would consist of 0, 1, 10, or 11

like signs corresponding to one of the 24 tests. Nono were observed. If

we weaken the test to comprise 0, 1, 2, 9, 10, or 11 like signs, we have

a six per cent test, and would expect to find 1.6 of the 24 tests with

these sign compositions. In fact we found two, test 6 with nine minus

signs and test 18 with two minus signs, just about as expected. Further,

these signs are the opposite of what we would expect if we were measuring

the verbal rigidity factor, the number two factor of the averoid analysis.

The conclusion here was quite unexpected but seems inescapable--the

use of SMC communalities contributes far more-than expected to the parsimony

with which the relationships in the Unitary Trait data can be described.

It would seem that if further factors are to be discerned in the data,

a much larger sample size must be employed.

Let us summarize the practical results of the foregoing analysis, as

it touches the issues of uniqueness and sampling, i.e., how sure the

investigator can be of his results.

1. The coefficient of variation of the largest root is 10 per cent.

2. The variance of the eigenvectors associated with this root is

5/Vn--N .
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3. One hundred to two hundred observations on each of the n variates

should be enough. If more than 200 can be collected, split the data in half

at random and run each half separately as well.

4. Use SMC communalities and make all factors beyond the first prove

their existence before you accept them.

15
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SECTION VII

APPLICATION OF FACTOR ANALYSIS

7.1 INTRODUCTION

Three applications of factor analysis are presented in this

section. Subsection 7.2 contains explanajtions of how factors are

interpreted for psychophysiological data. These examples should

give greater insight into the interpretation problem in general.

Factor Analysis is presented purely as a representation technique

in subsection 7.3.

7.2 FACTOR ANALYSIS OF PERSONAL HISTORY AND ANTHROPOMETRY DATA

Included in this section are two factor analytic studies which

were performed on data collected in a psychophysiology experiment.*

The first analysis is of personal history data ascertained from the

subjects by a questionaire which contained approximately 150 items.

Many of the variables were derived from more than one response, and

some of the original items were deleted since they were discrete

data points. After careful quantifying and scrutinizing, 41 variables

were retained. Eighty-eight subjects were used. In this and the

following study, the subjects were University of Dayton students.

The second study is concerned with 106 anthropometric measure-

ments taken on 131 subjects in the same experiment. Unlike the

personal history variables, this data set was already quantified.

Variables included a number of heights, breadths, circumferences,

and diameters.

In both studies, the principle components method was applied

using unities as an estimate of communality. The number of eigen-
values greater than one was used as a completeness criterion, i.e.,

determining of the number of factors to be rotated. Varimax was
the method of rotation employed for both.

The personal history data produced 14 factors. ft is important

to stress at this.point that one must be extremely familiar with the

*These factor analyses were performed under Contract AF33(615)-1119
monitored for the U. S. Air Force by Major Victor H. Thaler, 6570th
Aerospace Medical Research Laboratories. Wright-Patterson Air Force
B Ise.
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variables and what they represent, as well as the make-up of the

subject group, before a meaningful interpretation of the factors

can be made. In this case, all the factors could be identified

conceptually.

The best approach to interpreting the various factors is to

examine them one by one and note those variables which have the

highest loadings. For example, in Table 10 it can be seen that

Major Subject (.90), Educational Goals (-.74), and Vocational

Plans (.88) have the highest loadings in factor 1, indicating

that the factor is associated with educational-vocational plans.

Since Vocational Plans and Major Subject were ranked from "academic"

to "applied" in nature, and Educational Goals was rated in the
direction of higher educational motivation, it would seem logical

to conclude that the more applied the subject's interest, the

more likely that advanced degrees (law, Master, Doctorate) are

not desired. In addition, variables such as Home Address-Distance

(.38) and Full Scale IQ (-.31) should be considered. This is
where familiarity with the data is necessary. It was concluded

here that I.Q. probably had a tendency to relate to higher

educational goals and more academic interests. However, Home

Address-Distance, which is the distance between the subject's

home and the university, was thought to be a less universal value.
The relationship is likely peculiar to this university because

of its academic standards. Thus, this factor would be considered

in terms of educational and vocational plans, with some degree

of ability being associated.

The second factor is quite straightforward in interpreting.

It is obviously related to socio-economic level. The variables

Income of father (.71), Socio-economic Rating (-.77), Education
of Father (.81), and Education of Mother (.68) load most highly,

indicating a strong relationship between education and income.
Note that Socio-economic Rating is negative in direction because

of the scoring technique employed, i.e., the higher the level,

the lower the score. Furthermore, the educational achievement of

the father appears to be most important. Thus, the variables

indicate the factor is a measure of socio-economic level.
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The remaining factors may be interpreted in a similar manner.

The interaction of the variables in some factors is more subtle

and complicated, however, requiring a greater degree of insight.

The second example of a factor analytic study is that of

106 relatively homogeneous anthropometric measurements. As seen

in Table 11, 17 factors were produced according to the eigenvalue

criterion. The great number of high correlations between the

variables is responsible for the dramatic reduction of variables

to factors by approximately one-sixth.

Using the same interpretation technique as in the previous

example, it can easily be observed which variables load most

highly on each factor. Factor 1 in Table 11, for example, has

a large number of variables loading at 0.6 and above. Both

present and maximum weight of the subject load with a number of

body breadths such as shoulder, chest, waist, and buttock, as

well as various depths, circumferences, and skinfolds. Also

showing some importance bre the somatotypes. The first, or

endomorphic, somatotype depicts the amount of softness and round-

ness characteristic in the subject's body, while the "G"

(gynandromorphic) somatotype is concerned with the degree of

femininity in the body. In addition, the third, or ectomorphic,

somatotype loads at -0.45, and should be considered since it depicts

the lean or frail body.

Consequently, the various items point toward a factor which

explains general body size, but not height. The breadths, depths,

and circumferences which load are those of the trunk, and do not

include the extremities. The somatotypes must be considered, as

they help clarify and confirm the nature of the factor. Obviously,

the endomorphic and gynandromorphic body would have greater measure-

ments on the pertinent variables, while the opposite would be true

for the ectomorphic body. Thus, this factor can be labeled general

trunk dimensions.

The second factor has its major loadings on measurements of

height and, naturally, stature. Again, the loadings are extremely

high, usually in the range of 0.80 to 0.95. To a lesser extent, hand
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and foot dimensions appear in this factor. This is understandable,

however, since taller people usually have longer hands and feet.

Of equal importance in this factor is the third, or ectomorphic,

somatotype with a 0.76 loading. The long, lean body which it

represents is in line with the general nature of this factor.

Therefore, it would probably be labeled as stature.

Continuing, the third factor may be interpreted as being

relevant to grip strength or arm muscle. The highest loadings

appear on the three grip strength variables, while minor loadings

appear on the biceps and forearm measures. Although the later

are about one-half the size of the grip strength variables, the

fact that all other loadings are negligible and that the biceps

and forearm dimensions logically relate to the strength necessi-

tates their inclusion in interpretation.

By examination, factor 4 is a testicle factor, and factor 5

is a penis factor. Factor 6 is concerned with dimensions of the

head, while factor 7 percains more to facial measurements. The

various measurements of the hands, wrist, and feet comprise the

eighth factor. Similarily, the remaining factors may be defined 0
by careful examination of significant loading and consideration

of their conceptual importance.

While the above factors are all fairly clear because of the

nature of the variables, this is not always the cise. Therefore,

it must be reiterated that without a complete understanding of

the nature of the variables and the subject population, no meaning-

ful interpretation can be made.

7.3 FUNCTION REPRESENTATION

A function may be represented in miny different ways. The

function "sine" has, for example, a Taylor series representation,

a continued fraction representation, an infinite product representa-

tion, and a Chebyshev series representation.

The choice of method for representing the function depends on

the purpose for which the representation ir to bc used. If it is

desired to study a certain property of a function, a representatioer
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is chosen which is known to highlight that class of properties. A rourier

series representation may be chosen when the frequency content of a function

is of interest, for example. When the purpose includes evaluation of the

function, properties of the representation such as speed and region of

convergence help dictate the choice.

The properties of various classes of representation techniques have

been the point of much interest in the history of mathematics, and probably

the most studied class of representation techniques has been that of

orthogonal function expansions. This is so because the properties of

orthogonal function expansions have been found most desirable and useful

in practice. However, a set of orthogonal functions is usually obtained

in practice by solving diffcrential equations. Thus, in order to have

a set of orthogonal functions which reflect the properties of a class of

functions, a differential equation must be associated with that class of

functions.

Out of the proliferation of different orthogonal sequences such as

the Legendre, Chebyshev, Laguerre, and Hermite polynomials came the

unifying statement that all of these classical polynomials, 'n (x), when

multiplied by a particular weight function are solutions to the second

order differential equation

G(x)y" t {2 G'(x) - ¢1(x)} y' -

(n2-nL2 G"(x) + (n + 1) e(x) 0

where yn(x) = w(x)4n(x). The effect of this statement was to provide a

channel through which theory on one orthogonal sequence could be applied

to another orthogonal sequence.

In the last five years physical scientists have shown interest in

other methods which yield sets of orthogonal functions. The method about

to be discussed may be characterized by an attempt to represent each member

of a set of functions by a linear combination of nonlinear functions which

span the space of possible given functions. The method obtains the basis

functions by analysis of a symmetric, positive semidefinite matrix obtained

from the given functions by various methods. Moreover, it is possible to
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obtain a set of orthogonal basis functions which contribute maximally and in a

decreasing manner to the total variance of the given functions.

In what follows the given functions xi(t) (i = 1, 2, ... ,n) will be

represented discretely at N values of t by a vector with jth component x.
In factor analysis the given functions are first standardized by trans-

forming to functions with zero mean and standard deviation of one. A correlation

mati-ix with elements r.. is then formed. Factor analysis provides very many
1)

methods for analyzing the correlation matrix including principal components.

The method of principal components depends on cbtaining a representation of

the transformed given function as

x. =a. F + a. F + - + a F
1 aii1 12 2 in n

where it is assumed that the (F ) are orthogonal functions. The method of
k

principal components is based on the ability to spectrally resolve a linear

symmetric operation into

R = X e e T + A e e T + + A e e*T

1 11 2 22 n nn

where e. is the normalized eigenvector corresponding to the eigenvalue

A. of R. Then based on this spectral resolution of an operator, when
1

aik k e ki
Is chosen,i

Sa. F + a. F + + a. F
ii I 2 2 in n

will tdeed represent xi since
* T T FTAT =AT=

xx = (AF) (AF) T  AFFA AA R

Other methods of factor analysis make use of the full factor analysis model

which includes unique factors or functions:

xF a + a 2F2 + .' + a. F + a U .1i 1111i2 i im

The purpose of this model which includes unique factors is to reduce to a

minimum the number of factor functions (F I which contribute to more than one
k

given function xi.

There are methods in factor analysis for obtaining a set of factor functions

which are not orthogonal but oblique. These oblique factor functions are chosen

so as to demonstrate the properties of the class of given functions in some way

better than the orthogonal factor functions.

158

i :



Orthogonal rather than oblique functions are usually used for function

representation since they have such nice properties and are easy to handle.

Indeed, going from orthogonal to oblique functions is like going from 1inAr,

to nonlinear systems.

Nonlinear systems are, however, many times closer to reality. Just so,

when it is desired to have the basis functions or factors represent concepts

or actual causes of variance, oblique factors must be allowed since most

conceptual causes of variance are related (therefore not independent or

orthogonal.) Then let us consider the effect of these statements on the theory.

When the factor analysis of functions is stated as the problem of finding

matrices A and F are such that

Z = AF (1)

where A is the matrix ensemble of function vectors, A and F are

underdetermined. There are an infinite number of matrices A and F which

will satisfy Equation 1, just as there exist an infinite number of pairs of

vectors which will span a two-dimensional space. In the principal components

factor analysis discussec earlier, the condition of maximal, decreasing

contributions to variance fixed the matrices and made the problem determinate.

If initially we have any A and F satisfying Equation 1, we may

find others by "rotating" the given factors, i.e. by transforming each of

the given factors by an orthogonal transformation matrix T. For example,

in 2-space the factors may be rotated as shown in Figure 7.

In the analysis, the new oblique factors are derived by rotating a

given (usually orthogonal) system to a new, preferred oblique system. It

is postulated that a set of factors is more meaningful when each factor

goes through a separate "cluster" of functions (when a group of functions

are similar, their vector representations will be close to each other in

space).

In attempting to find mathematical statements equivalent to this

intuitive statement, most approaches reason as follows: When a factor

passes through a cluster of functions, the coefficients of that factor

for the nearby functions will be large while the coefficients of other

factors for this cluster of functions will be small. This rationale has

*159



F1

F2l 

INITIALLY AFTER ROTATION

Figure 7. Rotated Factors

found its mathematical expression in the maximization or minimization of

various functions of powers of various coefficients.

Representation using oblique factors is not quite so simple as in the

qothogonal case since the coefficients are no longer Fourier coefficients.

However the same method may be used to calculate the coefficients. For

example, suppose we wish to expand a new function Z in terms of two known

factors F and F2

Z alF 1 + a2F 2  (2)

If the factors are orthogonal, we find the Fourier coefficients by taking

the inner product of both sides of Equation 2 with each of the factors.

Thus,

(zF = a(rI IF ) + a 2(r IF 2) (3)

(ZIF 2) a(F1IF2) + a2(F2IF2)

and whun the factors are orthogonal,

(Flit) 6ij
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and

a = (ZIF).

'However, with oblique factors

(Fil) 6ij "

Thus the equations do not degenerate but must be solved simultaneously.
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Section VIII

RECOMMENDATIONS

Besides a survey of factor analysis, theory was extended in the areas

of effects of the number of observations, sampling effects, interpretation

of factors, and communality. There are other areas of factor analysis

which are suggested to be further studied.

There are many multivariate analysis models which are closely related,

such as, intrinsic analysis, Lobve-Karhunen, latent structure analysis, and

latent profile analysis models. A comparative study is needed to clarify

similarities and differences of these models.

Factor analysis packages should be made more adaptive, i.e. more

decisions could be made by the computer. For example, the number of

factors for rotation, the grouping of variables, etc., as a matter of fact,

the computer should handle the data up to the point of naming the factors.

This would make factor analysis available to all scientists with a minimum

effort on their part.
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Appendix I

COMPUTER PROGRAMWHITE-UPS

The factor analysis package presented in this appendix
consists of four programs whose write-ups are contained in
this appendix. The four program abstracts follow below in
front of the write-ups themselves.

A. Factor Analysis Program

This program is a specialized version of the A70A program
available from System Development Corp. which originated at
the Harvard Statistical Laboratory. A factor matrix is
computed using the Jacobi method. Input is restricted to a
Pearsonian correlation matrix read from Fortran binary tape.

B. Factor Rotation Program

This program is computationally identical to the A26D
program available from System Development Corporation. An
orthogonal rotation is performed using the Kaiser Varimax
criterion. Input is restricted to a Fortran binary tape
prepared by the factor analysis program, SRL-FAl. An ccuracy
check is provided by computing and printing the differences
between the original and the final communalities.

C. Oblimax Rotation Program

SRL-OBl is a general purpose program which transforms the
factor analysis model for a set of orthogonal factors to the
model for a set of oblique ones, i.e., it rotates factors to
a more meaningful oblique set.

Given an orthogonal factor pattern A on binary tape,
the program uses the OBLIMAX criterion to find a transformation
matrix A and reference structure matrix V such that

V = AA

as in Harman (Reference 2, p. 310). The heart of this
rotation is the specialized version of an OBLIMAX rotation
routine obtained from the University of Illinois.

Using V and A, other output forms of the oblique
factor analysis model are then computed, in particular:

P - the new factor pattern
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S - the factor structure

- the matrix of factor correlations

P and € may be written on tape for further use.

D. Factor Scores Estimation Program

.This program computes estimated factor scores using the
equation

f = AR-IZ

which is (16.2) in Harman (Reference 2, p. 3 4 1). Input to
the program consists of the correlation matrix R, the factor
coefficient matrix A, the factor correlation matrix * (if
needed), and the raw scores. Output consists of the estimated
factor scores (both listing and punched cards), as well as
R- 1, test coefficients for standard scores and for raw scores
if desired.
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A. Factor Analysis Program

CLASS: Self-Contained General Purpose Program

LANGUAGE: Fortran II

PUlRPCSE: To compute a factor matrix using the Jacobi method
and write factor loadings on to binary tape.

RESThICTIGNS:

No. of variables Maximum of 150
Input Binary tape containing

Pearsonian correlation matrix
Cutput Available outputs in BCD mode:

a) Correlation matrix

b) Latent roots and vectors
c) Factor loadings

Cutput in binary mode:
a) Factor loadings for

input to factor rota-
tion program

ESCRIPTION _USE _ CONIjENTS:

Logical Tape:

* 2 System BCi) input tape.
3 System BCD output tape.
5 Correlation matrices in

binary mode.
6 Factor londings in binary mode.
9 Used for temporary storage of

eigenvalues and eigenvectors.

Bjiary InpuTaeForm at

Record 1 (2 words)

Problem number and order of square matrix (N) -

both in integer form.

Record 2 through N+1 (N words each)

One rucord for each row of correlation matrix
(ones in diagonal).

Card Deck FrEvpara t ion

Each problem to be run rtiqul.res two ;at- cards as
follows:
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A. Title Card

Col 1 PUNCH 1
Col 2-72 Any BCD information desired

as page headings for
printed output.

B. Problem Card

Col 1-5 Problem number used to locate
proper matrix on input tape

and to identify BCD output.

Col 6-8 Number of variables in this
analysis.

Col 9-10 If all eigenvectors (and con-

sequently factor loadings)
are to be computed, leave

these columns blank. Cther-

wise punch the reduced number

of eigenvectors desired.

Col 11
1 "The correlation matrix with

communality adjustments is

to be printed.

= 0 -This matrix is not to be

printed.

Col 12
= I Latent roots and vectors are to

be printed.

= O Latent roots and vectors are

not to be printed.

Col 13 Estimation of communalities
1 ..aximum row element.

= 2 R 2 (square of multiple correla-

tion coefficient of given

variable with all other
variables).

3 Unities are retained.

4 Image-covariance 2 factor analysis.
(Essentially R with appropriate
adjustment of the off diagonal

elements to maintain the posi-

tive semi-definiteness of the

matrix).
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Col 14
C 1 - Fnctor loodinos Pre to be

written on logicnl tape 6
for input to factor rota-
tion program.

- 0 Factor loadings are not to be
written.

C. Finish Card

Col 1-6 Punch FINISH

D. Blank Card

Note: Cards C and D must follow the Problem
Card for the final problem.

ROUTINES USED IN SiL-FAl

hE,:V This routine is provided to rewind and unload
tapes.

FMLEV This routine determines the eigenvalues and
eigenvectors of a symmetric matrix. It is
one of several eigenvector routines which
are available from SHARE.

0
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B. Factor Rotation Program

CLASS: Self-contained General Purpose Program

LANGUAGE: Fortran II

PURPOSE: To perform an orthogonal rotation using the
Kaiser Varimax criterion.

RESTRICTIONS:

Number of variables 250 maximum

Number of factors 50 maximum

DESCRIPTIN ._USE ._COMMENTS:

I Logical T-pe:

2 System BCD input tape.
3 System BCD output tape.
6 Binary input of factor

loadings from SRL-FMI

Card Deck Preparation

A. Problem Card

Each problem to be run requires a single control
card as follows:

Col 1-5 Problem number used to locate
proper factor loaoings on
input tape and to identify
BCD output.

Col 6-8 Number of variables.

Col 9-10 Number of factors to be read

from tape and rotated.

B. Finish Card

A series of problem cards is followed by the
following card to signify that nil problems
desired have been run:

Col 1-5 Punch 09999

SUBROUTINES:

REV This routine is employed to rewind and

unload the binary input tape.

.1 



C. Oblimax Rotation Program

CLASS: Self-Contained General Purpose Program

LANGUAGE: Fortran II

PURPOSE: To rotate orthogonal factors to a set of oblique factors
using the OBLIMAX criterion and to compute various output forms of
the model.

RESTRICTIONS:

Matrix size No. of variables plus no. of
factos ! 130.

Input Binary tape containing orthogonal
factor pattern.

Output Available in BCD mode
1) Transformation matrix
2) Reference structure
3) Reference vector correlations
4) Reciprocals and inverses of

elements of diagonal matrix
5) (Primary) factor pattern
6) (Primarv ) factor correlations
7) (Primary) factor structure

Binary mode
1) (Primary) factor correlations

for input to second order
factor analysis

2) (Primary) factor pattern

DESCRIPTION, USE &COMMENTS:

Tape Assignment

Logical Tape:
2 System BCD input tape.
3 S:,stem -CD output tape.
6 Factor pattern input an! output

in binary mode.
5 Factor ccrrelation output in

binary mode.

Binary Tape InPut Fornat

Record 1 (3 words)

Problem number, no. variallcr (VAR), n.. ract.ors (NFAC).
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Record 2 through NFAC + 1 (1 + NVAR words each)

One record for each column of factor pattern.

Each record contains one dumnmy word followed by NVAR loadings.

Record NFAC + 2 (3 A6 words for each variable) variable names

Binary Tape Output Format

Factor Correlations Tape 5

Record 1 (4 words)

Problem number, 2 dummy variaoles, no. factors (NFAC).

Record 2 through NFAC + 1

One record for each row of the correlation matrix.

Record NVAR + 2 factor names

The values I through NFAC are set up in the 3 A6 words for
factors 1 through NFAC respectively.

Factor Pattern Tape A6

Same as binary input format.

Card Deck Preparation

Each problem to be run requires two data cards as follows:

A. Problem Card

Col 1-5 Problem number used to locate proper
matrix on input tape and to iden-
tify printed output.

Col 6-8 No. variables in this pattern.

Col 9-10 No. factors to be rotated.

Col 12-14 BCD output parameter.
Form the sum for desired output:

100 - V, rcferencu structurc,
010 - 0, factor correlations
001 - S, factor structure

blank - P, factor pattern (always
given).
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Other options
200 - all output listed on page [2].
!odified format where available.

4(0 - all output listed on
page [2]. Modified format
(PWIRIT.) and original output
( ix-place accuracy).

Col 16-20 JOB NUMBER to be written with factor
correlation on tape 5 matrix for
use in locating it.

blank - correlation matrix will
not be written on tape 5.

Col 22-25 J3B NUMBER to be written with factor
pattern on tape 6.

blank - factor pattern will not be
written on tape 6.

Col 28 Leave blank unless starting new
binary tape
1 - start new tape on logical

unit 5
2 - start new tape on logical

unit 6
3 - start both new.

Col 30 1 - the variables are to be normal-
ized during rotation (made of
length 1 in common factor
soace to insure that structure
values indicate angular close-
ness of fit).

blank - comnunality of variables
left unchanged.

Col 31-34 Fi.2 conversion
a~rars on BCD (printed) output
beside values whose absolute
value is greater than or equal
to this number.

blank - the value 0.35 is used.

2.0 - no f*s; three-place accuracy.

B. Title Card

Col 1-78 Any BCD information will be written
at the top of every page.
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C. Finish Card Last card in deck.

Col 1-5 99939

ROUTINES USED IN SRL-OBl

PREAD Reads the binary input factor pattern.

PWRITE Prints the selected BCD output.

RWIRITE Writes 0 and P on tape.

OBMAX Performs the rotation and calculates the output.

GENINV A routine for symmetric matrix inversion.

MATHEMATICAL NOTES

1. A mathematical explanation of the OBLIMAX rotation process may
be found in Harman (Reference 2, p. 310-319). The treatment is sketchy
in one respect and the following extension may be helpful for a com-
plete understanding of this program. Harman's terminology will be
used.

OBLIMAX tries to maximize a function on the elements of the
Reference Vector Structure matrix by an iterative process -hich
successively maximizes the function in each of the planes formed by
each pair of reference vectors. Although the end result is a trans-
formation from orthogonal vectors to oblique ones, before the end
of the first pass we must consider planes formed by, and transforma-
tions on, oblique vectors.

Therefore let us examine the general case of factor rotation
in the plane of the jth and k-h vectors. We are looking for a
transformation which maximizes a function on the values v'., i 1,
... , n, (see 15.4,Har.an )where

vIj A kl1vij i- 21k (1)

and where vij is the correlation between variable i and reference
vector j, or (ZilA,). But note-:that (1) does not define unique X.1
and X21 but a "line" of them. This i3 a reflection of the fact
that in the oblique casei cture alone does not determine the
factor analysis description of common factor space. Such a des-
cription requires two of the several related matrices. Thus in the
plane we must use X11  und X21  to transform one more set of values,
i.e., find another equation consistant with (1). The most ractical
solution in to let X11 and X21 transform the old reference vectors
into the new one:

A X 11Aj + X21AI
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As A; is not yet known we may only deduce by squaring

I 1 2 2
(AI{^I) + A2, + 2A11A2,(AkIAj) • (2)

Likewise as V.j is not yet known we must find the set of values
(A,A 21) for which

V I (AIIvij + X21Vik)4
k = -,22

vj I (XIIviz A21vik)2 2

is a maximum. For convenience let

A21x = - (3)
A11

Then X11vi j + A2 1Vik (vij + Vjkx)A 2l and we may simply
solve

(ii , ik )21

max k
X21 E (vij + Vikx)2 2

for x because the A21 's factor out and cancell.
Now combining (2) and (3)

2 2

A 1 + x X!, + 2Alx(AjlAk)

and solving for At! and A2 1 yields

W 2+ 2x(A IA) +~ I

'x2 + 2x(AjP.k) '+ I
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OBLIMAX, after finding x, finds the denominator in (4) byth
norma zing the vector A. + xAk where Ak and A. are the k
and j columns of the "t.tal" transformation matriA A (from the
original set of orthogonal reference vectors to the set of oblique
ones). An "updated" transformation matrix may then be generated by

At = AlIA j + X21Ak'.

Of course OBLIMAX provides two values for x and the same procedures
are applied, using the other value to find the new kth column of A
as well, thus rotating both the kth and jth reference axes.

2. When the rotation is finished, OBLIMAX has produced a trans-
formation A with a double use: it transforms the initial ortho-
gonal reference structure (equivalent to the factor pattern in the
orthogonal case) to an oblique reference structure

V = AA

and it transforms the initial factors into the new oblique reference
vectors. Hence A contains in its columns the direction cosigns
of the new reference axes, using the initial set as an orthogonal
basis.

The program then computes the matrix of correlations between
reference vectors

p A'A .

The transformation A from the orthogonal factors to the ref-
erence vectors and a hypothetical transformation T from the orig-
inal factors to the new set of oblique factors are related by

D = T'A (5)

where D is the diagonal matrix of the scaler products, or correla-
tions, between vectors T and A (p 1, ... , n). Because A
is defined as the vector Rormal toPthe hyperplane of all factorsp

Tq, q p, it is uncorrelted with every factor except Tp, and

hcnce D is diagonal.

From (5)

' =DA
-

tells us that T' may be calculated from A- I by normalizing its
rows, since the rows of T' are normalized and left multiplication
by a diagonal matrix is equivalent to multiplying each jth row by
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the element dj. To normalize A-1  by rows we may multiply each
row by the reciprical of the square root of the diagonal elements of^-,(A-I)

A-,(A-I), = A-i(A,)-l = (A'A)-l = *-1 (6)

So OBLIMAX simply inverts and finds the elements of D as ex-
plained above. It then finds the oblique factor pattern P and
matrix of correlations between factors 0 by the formulas derived
here.

0 = T'T DA-I(DA-I)' DA-I(A-1 )'D' =D(A'A)-ID

0 D'I1D

P = S- (AT)0 1  = AT(TT) -' ATT-1 (T')-1  A(T,) -!

V =AA

A VA-1

P '= VA '(T')-1 = V(T'A)-1 = VD-1

P VD"1

Finally, the factor structure may be computed

S = PO

3. NOTE: the program has an option to normalize variables in common
factor spaces during rotation. Then the OBLIMAX function is maximized
on

(z IA ')
v.. = j~i , i =l..
1) IjZil n

instead of

(Z1A) , i .

This change eliminates the effects of differing variable communali-
ties, making angular closeness of fit the determining factor.
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D: Factor Scores Estimation Program

CLASS: Self-Contained General Purpose Program

LANGUAGE: Fortran II

PURPOSE: To estimate factor scores using the
equation

f • A'R-Iz

where A is the n x m matrix of common factor
t coefficients, R is the n x n matrix of correlations

(unity in the diagonal), Z is the n x N matrix
of standardized scores, and f is the m x N matrix
of estimated factor scores. * is an m x m matrix
pf factor correlations; it is not used in orthogonal
solutions.

*RESTRICTIONS:

No. of variables Maximum 90
No. of subjects Maximum 90

DESCRIPTION, USE & COMMENTS:

Tape Assignment

Logical TapeS
2 System BCD input tape.
3 System BCD output tape.
6 Original correlations and

factor corbelations in
binary mode.

7 Factor loadings in binary
mode.

11 Raw data in binary mode.
15 Factor scores in BCD mode

for punching.

Card Deck Preparation

Each run requires the following cards:

A. Title Card

Col 1-78 Any BCD information
desired as page headings.
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B. Problem Card .1

Col 1- 5 Problem number used to
locate original
correlations on input
tape and identify BCD
output.

Col 6-10 Number used to find factor
loadings.

Col 11-15 If an oblique solution,
enter the number which
identifies the factor
correlations on tape.
If orthogonal leave
blank.

Col 16-18 Number of factors for
which factor scores
are to be computed..
Must be equal to or
less than the number
on tape.

Col 19- 21 Number of tape batteries
of raw data making up
variable set.

Col 22

1 R inverse is printed.

=0 R inverse is not printed.

Col 23

=1 Test coefficients (standard
scores) are printed.

=0 Not printed.

Col 24

: I Test coefficients (raw
scores) are printed.

=0 Not printed.
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C. Problem Card 2

Col 1-78 File identification in

6 col fields as
indicated in Col 19-21
of previous card.
Maximum of 13.

Repeat above cards for each job.

D. Finish Card

Col 1-6 -Punch FINISH

E. Blank Card
F. Blank Card

ROUTINES USED IN SRL-FS:

INVEFT Computes R inverse

TION 11 Positions tape 11 at
correct raw data file.

LSHFT Shifts integer numbers
into FORTRAN II format
since tape 11 is written

in FORTRAN IV.
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Appendix II

TI4E FUNCTIONS OF COMPUTATION

In this appendix we present a compilation of data which will facilitate

estimation of computation times on various computers. The factor analysis

techniques may be described in terms of the basic matrix operations, sum,

product, inversion, and eigenvalue and eigenvector computation. The following

table gives the computation time where j, 6, and a are the multiplication,

division, and addition times, respectively, for a given computer.

1. Computation of all eigenvalues and eigenvectors of matrix A..

by the Jacobi method (Reference 64):

T = .10 NS + 20 N3 a

2. Inversion of a symmetric matrix A xN by bordering:

N2(N-l)u + 1 N(N2+ + 1 2 N + 15)aI

3. Multiplication of A N M "BMP:

T NPMp + NP(M-l)a

4. Addition of A + B
NXM NXM

T = NMa

S. Computation of all eigenvalues and eigenvectors of matrix

AN×N by the Householder-Ortega-Wilkinson method:

T = .00162N2 ,

where T is the time in minutes on the IBM 704 computer.

Application of this equation to another computer will require

multiplication by a scale factor which reflects the ratio of
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speed of the other computer compared to the 
IBM 704. This empirical

equation was derived by least squares methods 
from data given in

Reference 65

1
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Appendix III

DESIGN OF A FACTOR ANALYSIS

1. Data Collection

There are features and properties of factor analysis which are

learned from experience by users, but which are rarely written into

textbooks on the subject. The purpose of this appendix will be to

touch on some of these features.

Factor analysis is performed on data which, geometrically speaking,

consists of N points each situated in n-dimensional space. The purpose

of factor analysis is to describe the shape of the set of N point as

comprehensively and briefly as possible through mathematical shorthand.

In this framework, some of the shortcomings of factor analysis

can be described. In the first place, only the correlation between

pairs of variables is used to describe the raw data. This constitutes

a drastic reduction of the data into very few numbers. If N=200 in

ordinary three dimensional space, then forming the corralations involves

reducing 600 numbers into only 3 numbers. Factor analysis reverses

this process, and from these 3 numbers manufactures 3 characteristic

roots and 9 characteristic vector elements. Evidently the entire V
process depends on how adequately all the information in the 600 numbers

can be condensed and contained in only 3 numbers.

These three numbers are the product-moment correlations between

the variables. These are, to begin with, pairwise expressions. They

take each pair of variables, 1 and 2, 2 and 3, 1 and 3, and presume to

describe in one numerical quantity what the relationship is between each

pair. It becomes clear that much of the important information about

the shape of the set of N points EM be lost. It will depend, of

course, on the shape of the set. The implication is clear. Look

at the data out of which the correlations are being calculated. It

is not feasible to try to make 3 dimensional sketches, and besides,

there will usually be far more than just three variables. From n

variables there will be n(n-l)/2 different pairs of variables, and

the same number of correlation coefficients. Even plotting out all

these graphs will be a major job, and for practical purposes it will
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be sufficient to plot only a portion of all the N points defined by the

available data.

What should the researcher be looking for? There are three basic

danger signs to look for.

a. Outliers: data points which don't belong in the set, either

because of incorrect collection or copying of data or irrelevant data.

b. Multiple populations: data points will be found to form two

clusters in some graphs, in which case a different factor analysis for each

cluster will be necessary. In practical problems the difference will be

due to some observable fact such as differences of sex, production line,

experimental technique, etc., which was initially ignored because it was

considered unimportant for purposes of this analysis.

A more difficult danger sign in this connection is the presence of

multiple populations not separated by distance. The only way to spot this

is to go back to the raw data whenever a graph is found whose points follow

an X, Y, or V shaped pattern. The purpose will be to see whether points on

the one leg of the V have any other feature in common. No rigid rules

can be given here. The picture will never be as clear-cut as is suggested

here, and only experience can guide the researcher into those habits and

practices of data examination which ferret out suspicious weaknesses in

the original design of data collection.

C. Curvilinearity of data: the product-moment correlation coefficient

measures the strength of relationship between two variables only if that

relationship is linear. If the graph of the data plots into the shape of

a C or S , then the whole projected factor analysis should be stalled

at least temporarily until a statistician can be shown the data. Thu

various options which might be recommended by him at this point go beyond

the scope of this study.

These are the major danger signals. There ore others, such as

heteroscedosticity (data points pinched together at some places on the

graph and spread out at others), but here again the investigator should

be guided by the general warning--if anything looks suspicious, ask

about it.
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The actual calculation of the product-moment correlation

coefficient is described in Section 2, and will not be spelled

out here. What is not so frequently described, and often badly

needed, is advice about avoiding biases due to improper data

collection.

The framework for such a description must begin with the

classical distinction between population and sample. Ideally,

we might want to construct, for each pair of variables, the

population correlation coefficient. For practical purposes this

would be unwise in most cases. If only because the labor,

editing, and error control would be so demanding, we would be

led to sample.

It is in defining this sample that bias is apt to enter,

particularly since any investigator is initially prone to the

temptation to feel that a big correlation is a good correlation.

It is only with experience that an investigator comes to accept

the statistical standard that the population correlation, or an

unbiased approximation to it, is the only good correlation. To

bias a correlation coefficient, it is necessary only to remove

a few observations from the middle of the set of observations,

and since most observations will be in the middle in any case,

such a removal will not seem particularly unprofessional.

The professional standard which will be adhered to is the

criterion of random sampling--each data set should have the same

chance of having its data incorporated into the computations as

any other data set. Whether this is accomplished by strict random

sampling, systematic sampling, or cluster sampling is irrelevant

here--it is the criterion which must be strictly adhered to if the

sample correlation coefficient is to contain all the informatiot

that it can about the population coefficient.

Another important issue in connection with sampling is that

of sample size. How large a sample ought one to take? Here again

no attempt will be made to repeat the technical approach taken by

most textbooks, but to deal in terms of insights. There is a
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popular feeling that something called a "law of averages" exists.

Among non-professional people, this law exists as a feeling that

something ought to happen, and few people would dare to try to

formulate the "law of averages" specifically, in the sense that

they might formulate the law of gravity or Archimedes principle

explicitly. Part of the reason is that certain key concepts such

as variance are not part of common knowledge, and that an explicit

formulation of the law of averages requires this concept.

The best that can be done to formulate the law of averages

without using the idea of variance is to say that an average

(height, weight, etc.) will be "improved" if it is based on more

and more observations. When the law is formulated explicitly

it appears that this "improvement" is subject to another law,

commonly referred to as the "law of diminishing returns". More

specifically, it says that bringing in more observations does

improve the accuracy of an average, but that the hundredth sample

does not contribute as much as the tenth observation, and the

thousandth observation contributes even less.

These laws also apply to estimating a product-moment correlation

coefficient. The larger the sample, the better will be the coefficient

probably. However, successive samples contribute less and less to

the goodness of the estimate. (These are crude statements only of

the situation, and are intended to be only a first approximation

to the kind of formulation which would satisfy a professional

statistician.)

The actual rate of convergence of the sample correlation

coefficient to its true population value cannot be simply described,

since it depends on what the true value is. If the true correlation

is high, only a small sample is needed, whereas if it is near zero

a large sample will be required. Since in factor analysis the one

sample we draw will have to serve for estimating many correlations,

it seems desirable to concentrate only on those correlations where

we are likely to be in trouble, that is, cases of zero correlation

in the population.

2. Basic Requirements for a Factor Analysis

The first issue facing the investigator will be that of deciding
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whether factor analysis is at all relevant to the problem facing him.

Consultation with a professional factor analyst of course is the best

advice that can be given, but in certain situations it may be safe

to proceed with no more than the guidance given here.

Factor analysis was first employed in personality testing and

intelligence testing, and the conditions required for using it can

be described with reference to an analogous situation from psychology.

The reader can then decide for himself whether these conditions apply

to the experimental data he is faced with--whether from an assembly

line, an electrocardiograph or a radar or radio signal full of un-

wanted noise.

First, all the variables must be results rather than causes.

They must be analogous to school examination results from different

subjects--mathematics, physics, music, If any of the variables

are causes--such as parents' I.Q. or education, pre-school play

habits, etc.--and the purpose of the study is to find the relation

between causes and effects, then factor analysis is not the proper

technique.

Secondly, the investigator should ask himself whether the kind

of answer provided by factor analysis will be at all relevant to

the question he is posing as he looks at the data. That answer,

in the school analogy, will be something to this effect: there is

one factor with high weighting on all subjects, a second with high

weighting on mathematics and physics and negative weighting on music

appreciation. It will be up to the investigator to discover or decide

that the first factor is general intelligence and the second is

scientific aptitude. But it must be kept in mind that this kind

of answer may not be what is really wanted. If the investigator

is really interested in deciding who should be admitted to college,

or whether boys differ from girls in scientific ability, then he

should look for new or different analytic techniques. Factor analy-

sis should never be undertaken solely because the eata are in the

proper form for factor analyzing. Any data processing technique such

as factor analysis should be treated as relevant or irrelevant

depending on what problem is being posed, what hypothesis is being
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tested, why the data are being collected in the first place.

Assuming that the two foregoing conditions, absence of causal

data and relevance of factor analysis, have been met, we may now

turn to issues of proper data collection. Analysis is bound to

be better if good data are collected, and irrelevant data rejected.
Good data will have the following characteristics:

a. Completeness: Each data set will contain one observation

on each of the variables incorporated. This condition is not

absolutely essential, but it eases the computation burden consider-

ably, whether calculations are performed on desk calculators or

electronic computers.

A trivial and an unrealistic example will show how one must

proceed. Suppose the letter x represents a missing observation,

and the data consists of six data sets each of five variates, namely

(2, 1, x, 3, x), (x, 3, 2, x, 7), (3, 2, 5, x, 1), (2, x, 3, 1, x),

(3, 4, x, 1, x) and (4, x, x, 3, 5). To form the correlation

between the first two variates, we can use only the first, third

and fifth data set, since only these contain data on both of these

variates. However, note that we will encounter difficulties in

calculating the correlation between the third and fourth variate,

since only the fourth data set contains observations on both variables,
and a correlation cannot be computed from one such pair. The investi-
gator must watch for this kind of situation. One other condition must

be met before we can proceed to accept in this way numerical material

containing missing data. That is, there must be no relationship between

the mtgntude of the missing numbers and the fact of their being missing.

If the mid4sing numbers are all unusually large, or unusually small, then
nothing at all can be done with the data.

b. Relevance: Factor analysis will be much improved if the investi-
gator has some intelligent suspicions as to what factors might emerge.

In such a situation, the most desirable thing is to choose variables
which will yield the factor if it exists. Thus if a range of scientific

ability is expected as a factor, then we should incorporate variables

on physics, chemistry, art and music, with the hope that one factor

will have positive weight on the first two and negative weights on the
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last two, either before or after rotation. Of course, factor weightings

are non-directional and the signs of the weights may be reversed,

yielding in effect an anti-scientific factor. This will be due to

the arbitrariness of the calculations, and the investigator can change

all the signs before publishing the results, in order to be able to

provide psychologically meaningful names for the factors. Even the

major factor, the general intelligence one in any examination test

data, may have negative weightings on all the items and thus measure

general stupidity instead of general intelligence. Each factor is a

dimension, such as stupidity-intelligence, and we may refer to the

factor by either pole of the dimension, or by both if the opposite

polarity is not clear from the context. Guilford has suggested

collecting three variables for each factor suspected to exist, and

this number three should be regarded as a minimum.

c. Factorial simplicity: Ideally, each variable should con-

tribute to a very significant degree to only one underlying factor,

otherwise the factorial structure of the data is rendered very complex,

and even rotation will fail to clarify the factors into meaningful

psychological entities. The foregoing is formulated in terms of the

school grade analogy, but the situation is the same in any field of

investigation.

d. Unbiasedness: The data must, insofar as possible, consti-

tute a random sample of the population whose factor structure we

are trying to describe. That is, each element in the population

should have the same opportunity as any other element to be incor-

porated into the sample.

e. Linearity: Raw data are not used directly in a factor

analysis. Rather, the relationship between all possible pairs of

variates, as measured by the product-moment correlation coefficient

rij00
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is employed. Other measures of correlation should not be used.

The important thing to note here is that the product-moment correla-

tion coefficient measures the strength .of the linear relationship

between two variates. If the relationship is not linear, but is,
say, curvilinear, the coefficient can be calculated but there will

be distortion and bias in any factors which are calculated from

such deceptive coefficients. Note a very important distinction

here: the relationships between the variates must be linear, but

there must not be a linear dependency between variates: one variate

cannot be the sum or the weighted sum of two or more other variates,

in effect.

f. Editing: Often one will be tempted to throw away data

which do not fall in line with the rest of the material. The
guiding principle here is that one can reject it only if One can

be sure that he will not be tempted in the future to apply the

results to other data which is similarly out of line.0
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Appendix IV

THI REFEREi CE GUIDE TO FACTOR ANALYSIS

INTRODUCTION TO THE REFERENCE GUIDE

A factor analysis provides a description of n variables by a

linear combination of m hypothetical factors. The reference guide is

designed to help a scientist to obtain such a representation. Each step

presents a decision to be made by the user and refers to subsections and

appendices of the report which will help him make these decisions.

A. DESIGN OF EXPERIMENT

1. Choose linearly related variables .. . . App. 3.2e

2. Randomly sample the observations

on the variables ............... .... App. 3.2d'

3. Choose numbers of variables and

observations within computational

bounds .... .................. .... App. 1

4. Choose only normally distributed

variables if any statistical

factor analytic techniques will

be used ... ................. .... 2.5; 4.5

5. Choose an appropriate number of

variables for a hypothesized number

of factors ..... ................ .. App. 3.2b; App. 3.2c

6. Select an appropriate number of

observations for a given set of

variables .... .... ................ 4.6; 6.3; App. 3.1

B. PROCESSING RAW DATA

I. Decide on the correlation coef-

ficient to be used ................ ........23

a. For quantitative data ........ .2.3A; 2.3C

b. For ranked data ...... .... ........... 23A

c. For dichotomized data ........ .2.313 2.3C

2. Treat missing data by three

available methods ..... ..... ........... 26
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3. Decide whether to scale the

correlation coefficients ............ .. 3.4

4. Compute the correlation matrix

in proper format ..... .... .... .......... App. 1.A

C. THE FACTOR ANALYSIS

1. Choose the factor analysis technique

to be used .... .......... ...... . . 4.3

a. Principal-factor technique ......... App. I.A

b. Centroid technique .... ............. ... Refs. 10, 66

2. Decide upon the communality values ....... 4.4

a. For N > 40, choose unities ......... App. l.A

b. For N <,40 and for interpretive

purposes, choose squared multiple

correlations ..... ................ .. 2.7; App. l.A

C. For N < 40 and data reduction

purpcses (preservation of gramian

properties 3.3), choose the method

of ........ ...... .... .... 4.4

D. ROTATION

1. Decide whether to rotate ... .. ....... ... 5.2

a. If purpose of factor analysis is

data reduction: no rotation

b. If purpose of factor analysis is

interpretation: rotation

2. Choose the number of factors to rotate ..... 4.5

3. Select the kind of rotation technique ...... 5.3

a. Orthogonal rotation (Varimax), if

uncorrelated, that is independent

factors are hypothesized ..... .......... App. 1.B

b. Oblique rotation (Oblimax), if

correlated, that is dependent

factors are hypothesized ..... .......... App. 1.C
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E. INTERPRETATION

1. Orthogonal case. .. .................. 5.3; 7.2

2. Oblique case. .. ....................... 5.4

F. USING THE FACTORS .. .. ........ ..... 4.7; 7.3; App. 1.D
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Appendix V

GLOSSARY

Bi-factor solution: a solution, where the variables are described by a

general factor, uncorrelated group factors, and a unique factor each.

Biserial correlation coefficient: a bivariate correlation coefficient,

where one variable is dichotomized and one variable has quantitative

scores.

Centroid solution: a close approximation to the principal-factor

solution with considerable saving in labor, where the n variables

are described as well by m common and n unique factors.

Common factor: a factor present in more than one variable of a set of

* variables.

Common-factor space: the space of m common factors.

Communality of a variable: the sum of the squared common factor loadings

of the variable; or, the contribution of the common factors to the

total unit variance of the variable; or, common-factor variance.

Complete correlation matrix: a correlation matrix with ones in the main

diagonal.

Complete factor pattern: a factor pattern which represents the total

unit variance of each variable.

Completeness of factorization: the problem of when to stop factoring,

that is when to stop extracting factors.

Completeness test: a test to check for completeness of factorization.
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Complexity of a variable: the number of common factors involved in the

description of a variable.

Contingency coefficient: a bivariate correlation coefficient, where both

variables are classified into two or more categories.

Correlation coefficient: the coefficient describing the linear inter-

relationship of two variables.

Correlation matrix: a real, symmetric square matrix R, whose elements

rij are the correlation c officients between standardized variables

Zi and Z .

Covarimin: an oblique rotation method.

Dichotomized variable: a variable which is given by its frequencies in

two classes.

Error factor: see specific factor.

Factor: factors are defined as the hypothetical constructs or hypothetical

variables in terms of which a variable is linearly represented.

Factor analysis: the analysis of a set of variables into a set of common

and unique factors by factoring the correlation matrix of those

variables.

Factoring problem: the problem of factoring a given correlation matrix

into a factor matrix with an arbitrary reference frame.

Factor loading: same as loading of a factor.

Factor matrix: the matrix of factor loadings.
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Factor method: a method to factor a corrrlation matrix in order to

obtain a representation of a set of variables in terms of factors.

Factor model: the factor model is given by a set of n equations

describing t variables in terms of m common and n unique

factors under the assumption that the variables are linearly composed

of the factors.

Factor pattern: the set of equations describing a set of n variables

in terms of m common and n unique factors; sometimes only the

table of factor loadings with the factor designations at the head

.of the columns are referred to as a pattern.

Factor score: the elements of a factor vector.

Factor solution: a solution to a given factoring problem; often the

factor methods are called factor solutions.

Factor structure: a factor structure is a table of correlations between

the variables and the factors.

Four-point coefficient: same as -coefficient.

General factor: a factor present in all variables of a set of variables.

Gramian matrix: a symmetric, positive semidefinite matrix, where a

symmetric matrix R is a matrix for which R = R T holds.
R represents thereby the matrix with rows and columns of R

interchanged, called the transpose of R. Positive semidefiniteness

of a matrix is defined as the property of a matrix to have only

positive or zero principal minors.

Group factor: a factor present in more than one but not in all variables

of a set of variables.
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Indeterminacy in factor analysis: referring to the infinitude of factor

solutions accounting for the factorization of an observed correlation

matrix.

Kaiser-Dickman Method: an oblique rotation method.

Kendall's T-correlation coefficient: a bivariate correlation coefficient

for ranked data.

Loadings of a factor: the coefficients of the factors in the representation

of variables by the factors.

Multiple-factor solution: this solution is obtained by transformation

(rotation) of a principal-factor or centroid solution according to

the principles of simple structure.

Multiple-group solution: a factor solution in which several common

factors are extracted in one operation, where these factors can be

.oblique.

Oblimax: an oblique rotaticn method.

Oblimin: an oblique rotation method.

Oblique rotation method: the reference frame after rotation is an

oblique one.

Observation = measurement = subject = object = individual.

Observed correlation coefficient: a correlation coefficient computed

from observed data.

Orthogonal rotation method: the reference frame after rotation is an

orthogonal one.
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Patter: same as factor pattern.

Pearson's product-moment correlation coefficient: a bivariate correlation

coefficient for quantitative measurements.

C-coefficient: a bivariate correlation coefficient for truely dichotomized

variables.

Positive semidefiniteness: see Gramian.

Preferred position of a reference frame: a reference frame for which the

t factor pattern has a certain prescribed format, where this format can

be given in different ways, for example by the simple structure

criteria..

Princ3pal component solution: a principal-factor solution of a complete

correlation matrix; there are no unique factors.

Principal-factor solution: an orthogonal solution, where the variables

are described by m common and n unique factors; the reduced

correlation matrix is factored.

Product-moment correlation coefficient: same as Pearson's product-moment

correlation coefficient.

Quartimax: an orthogonal rotation method.

Quartimin: an oblique rotation method.

Rank: if N objects are arranged in an order according to some property,

which they all possess in a varying degree, the objects are said to

be ranked; each object has a rank expressed as a natural number

between 1 and N.
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Rank of a matrix: the rank of a matrix is the number of rows (or columns)

of the largest submatrix whose determinant is not zero.

Reduced correlation matrix: a correlation matrix with communalities in

the main diagonal.

Reduced factor pattern: a factor pattern which represents the common

factor variance of each variable.

Reference axes: geometrical interpretation of the factors for rotation;

the configuration of the reference axes can be oblique or orthogonal.

Reference frame: the frame of reference axes.

Reproduced correlation coefficient: a correlation coefficient reproduced

from the pattern of factor loadings.

Residual correlation coefficient: a correlation coefficient computed as

the difference between an observed and a corresponding reproduced

correlation coefficient.

Residual matrix: a matrix whose entries are the residual correlation

coefficients.

Rotation: procedure to re-orient the arbitrary reference axes, determined

by the method of factoring the correlation matrix, to some position

useful for the interpretation of factors.

Rotational problem: the problem of rotating the arbitrary reference frame,

obtained as the result of factoring the correlation matrix, into a

preferred position.

Rotation method: same as rotation technique.

Rotation technique: a technique to sclve the rotational problem; there

are orthogonal and ollique rotation iochiq'oes.
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Simple structure: a format of the factor pattern, established by Thurstone,

as the goal of rotation, observing several criteria.

Spearman's rank correlation: a bivariate correlation coefficient, where

both variables are ranked.

Spearman's rank difference method: same as Spearman's rank correlation.

Spearman's p-correlation coefficient: same as Spearman's rank correlation.

Specific factor: results from decomposing the uniqueness of a variable

into two portions of variance--that due to the particular variable

set and that due to error in measurement. Correspondingly two

factors are defined: the specific factor and the error factor.

Standardized variable: a variable whose mean is zero and whose standard

deviation is one.

Structure: same as factor structure.

Symmetric matrix: see Gramian.

Tetrachoric correlation coefficient: a bivariate correlation coefficient,

where both variables are dichotomized.

Thorndike's median ratio coefficient of correlation: a bivariate correlation

coefficient for quantitative data.

Total contribution of a factor to the variances of all variables: the sum

of squared loadings of all variables on that factor.

Total-factor space: the space of m common and n unique factors.

Trace of a matrix: • the sum of diagonal values of a matrix.
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Two-factor solution: a solution, where all variables are described by

one general factor and one unique factor each.

Uni-factor solution: an orthogonal factor solution, where groups of

variables are each described by only one factor.

Unique factor: a factor present in a single variable of a set of

variables.

Uniqueness: the contribution of the unique factor of a variable to the •

unit variance of that variable.

Uniqueness of a solution: the problem referring to discrepancies of two

factor solutions due to sampling effects.

Variable: a vector of N observed values where N is the number of

observations.

Varimax: an orthogonal rotation method. 0
Yule's coefficient of association: a bivariate correlation coefficient

for dichotomized data.

Yule's coefficient of colligation: a bivariate correlation coefficient

for dichotomized data.
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